书签 分享 收藏 举报 版权申诉 / 26
上传文档赚钱

类型Eviews数据统计与分析教程8章时间序列模型-协整理论课件.ppt

  • 上传人(卖家):晟晟文业
  • 文档编号:4300987
  • 上传时间:2022-11-27
  • 格式:PPT
  • 页数:26
  • 大小:92.50KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《Eviews数据统计与分析教程8章时间序列模型-协整理论课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    Eviews 数据 统计 分析 教程 时间 序列 模型 整理 课件
    资源描述:

    1、第8章 时间序列模型 重点内容:时间序列的分解方法 随机过程的定义 AR、MA、ARMA模型的建立方法 协整理论 误差修正(ECM)模型的建立一、时间序列的趋势分解时间序列的分解方法包括两种:季节调整(适用于趋势要素与循环要素不可分时)趋势分解(适用于趋势要素和循环要素可分解时)一、时间序列的趋势分解趋势分解趋势分解HP(Hodrick Prescott)滤波法)滤波法 设时间变量Yt含有趋势因素和波动因素,令Yt=YtT+YtC (t=1,2,T)其中,YtT表示含有趋势因素的时间序列,YtC表示含有波动因素的时间序列。HP滤波法就是将时间序列Yt中YtT的分离出来。设 min HP滤波就是

    2、求该式的最小值。HP滤波取决于参数,当=0时,符合最小化的趋势序列为Yt序列;当逐渐变大时,估计的趋势变得越来越光滑;当接近于时,估计的趋势接近于线性函数。一、时间序列的趋势分解趋势分解趋势分解HP(Hodrick Prescott)滤波法)滤波法 EViews操作方法:选择序列对象工具栏中的“Proc”|“Hodrick Prescott Filter”选项,将弹出右图所示的对话框。在“Smoothed”的编辑栏中输入趋势序列名在“Lambda”的编辑栏中输入参数的值,如果是年度数据输入100,如果是季度数据输入1600,如果是月度数据输入14400。然后单击“OK”按钮,就会得到原序列和趋

    3、势序列的图形。二、时间序列的指数平滑EViews操作方法:选择序列对象工具栏中的“Proc”|“Hodrick Prescott Filter”选项,就可以弹出指数平滑法的对话框,如下图所示。在“Smoothing method”中选择方法;在“Smoothing parameters”中写入平滑参数,如果输入字母E,系统会自动估计参数;在“Smoothed series”输入平滑后的序列名称。三、随机过程分类分类:白噪声(White Noise)过程随机游走(Random Walk)过程。三、随机过程分类分类:白噪声过程白噪声过程是指,对于随机过程xt,tT,如果 E(xt)=0 Var(x

    4、t)=2 Cov(xt,xt+-s)=0 其中,tT,(t+s)T,s0,此时xt为白噪声过程。白噪声过程是平稳的随机过程,其均值为0,方差为常数,随机变量间不相关。白噪声源于物理学,指功率谱密度在整个频域内均匀分布的噪声。三、随机过程分类分类:白噪声过程白噪声过程是指,对于随机过程xt,tT,如果 E(xt)=0 Var(xt)=2 Cov(xt,xt+-s)=0 其中,tT,(t+s)T,s0,此时xt为白噪声过程。白噪声过程是平稳的随机过程,其均值为0,方差为常数,随机变量间不相关。三、随机过程分类分类:白噪声过程白噪声源于物理学,指功率谱密度在整个频域内均匀分布的噪声。时间序列xt白噪

    5、声过程图形 三、随机过程分类分类:随机游走过程随机游走过程是指,时间序列中下个时期的值等于本期值加上一个独立的(或至少是不相关的)误差项。在最简单的随机游走中,xt的每一次变化均来自于前期xt-1的变化,其表达式为 xt=xt-1+ut (8-9)其中,ut为平稳的随机过程,即为白噪声过程,xt为随机游走过程。三、随机过程分类分类:随机游走过程时间序列xt随机游走过程图形四、时间序列模型的分类1、自回归(AR)模型时间序列xt 的p阶自回归(AR,Auto Regressive)模型的表达式为 xt=c+1xt-1+2 xt-2+p xt-p+ut其中,参数c为常数;1,2,p为自回归模型的系

    6、数,是待估参数;p为自回归模型的阶数;ut为白噪声序列,其均值为0,方差为2。称xt为p阶自回归过程,用AR(p)表示。自回归模型AR(p)常用来修正随机误差项ut的序列相关 四、时间序列模型的分类2、移动平均(MA)模型时间序列xt 的q阶移动平均(MA,Moving Average)模型的表达式为 xt=c+ut+1 ut-1+2 ut-2+q ut q 其中,参数c为常数;1,2,q为移动平均模型的系数,是模型的待估参数;q为移动平均模型的阶数;ut为白噪声序列,其均值为0,方差为2。称xt为q阶移动平均过程,用MA(q)表示。时间序列xt 由1个ut和q个ut的滞后项加权的和组成,“移

    7、动”是指时间t的变化,“平均”指的是ut滞后项的加权和。四、时间序列模型的分类3、自回归移动平均(ARMA)模型自回归移动平均模型是由自回归模型AR(p)和移动平均模型MA(q)共同组成的随机过程,因而也被称为混合模型,记作ARMA(p,q)。其表达式为xt=c+1xt-1+2 xt-2+p xt-p+ut+1 ut-1+2 ut-2+qut q其中,p和 q分别表示自回归模型和移动平均模型的最大阶数。当p=0时,自回归移动平均模型ARMA(0,q)=MA(q);当q=0时,自回归移动平均模型ARMA(p,0)=AR(p)。四、时间序列模型的分类3、自回归移动平均(ARMA)模型ARMA模型的

    8、识别 在EViews软件中,通过分析序列的相关图判断ARMA(p,q)模型的p与q的阶数。在主菜单栏中选择“Quick”|“Series Statistics”|“Correlogram”选项,在弹出的文本框中输入序列对象的名称;或者打开序列对象窗口,选择序列对象工具栏中的“View”|“Correlogram”选项,均会弹出对话框。四、时间序列模型的分类3、自回归移动平均(ARMA)模型ARMA模型的识别“Level”表示原序列,“1st difference”表示一阶差分序列,“2st difference”表示二阶差分序列。“Lags to include”中输入最大滞后期k(季度数据,

    9、最大滞后期为4、8等;月度数据,最大滞后期为12、24等)单击“OK”按钮即可得到序列对象的相关图和Q统计量。四、时间序列模型的分类3、自回归移动平均(ARMA)模型ARMA模型的识别 在ARMA模型的识别中,如果自相关函数(AC)在p期后显著趋于0,偏自相关函数(PAC)在q期后显著趋于0,则建立ARMA(p,q)模型。四、时间序列模型的分类4、自回归单整移动平均模型ARMA(p,d,q)经过d次差分后变换的ARMA(p,q)模型为ARIMA(p,d,q)模型(Autoregressive Integrated Moving Average)。ARIMA(p,d,q)模型的估计过程与ARMA

    10、(p,q)模型基本相同,不同的是在估计ARIMA(p,d,q)模型时需确定原序列的差分阶数d,并对xt进行d阶差分。因而在构建模型前需通过单位根检验来确认时间序列是否平稳,以及含有的单位根的个数。五、协整和误差修正模型1、协整 非平稳的时间序列的线性组合可能是平稳序列,我们把这种组合后平稳的序列称为协整方程,并且这些非平稳的经济变量间具有长期稳定的均衡关系。协整可以用来描述两个及两个以上的序列之间的平稳关系。假如非平稳(有单位根)时间序列的线性组合是平稳的,即I(0),则这些变量间有协整关系。五、协整和误差修正模型1、协整 EG两步 检验法:第一步:检验非平稳的序列是否是同阶单整,如果是同阶单

    11、整再建立回归方程,为 yt=0+1x1t+2x2t+k x kt+t 估计后得到的残差为 t=yt 0 1x1t 2x2t kxkt第二步:检验残差序列t的平稳性。若残差序列不平稳,即存在单位根,tI(1),则回归方程的k+1个变量间协整关系不存在。如果残差序列平稳,即不存在单位根,tI(0),则k+1个变量间协整关系存在。110110110110110五、协整和误差修正模型1、协整 EG两步 检验法(EViews操作):第一步:对变量inc与cj进行单位根检验。打开序列对象,在工具栏中选择“View”|“Unit Root Test”选项。“Test type”中选择ADF(Augmente

    12、d Dickey Fuller)检验法;“Test for unit root in”中选择“Level”原序列形式;“Include in test equation”选择“Trend and intercept”(趋势项和截距项)。然后单击“OK”按钮 110110五、协整和误差修正模型1、协整 EG两步 检验法(EViews操作):第二步:用最小二乘法对回归模型进行估计。选择EViews主菜单栏中的“Quick”|“Estimate Equation”选项,在弹出的对话框中输入变量名,然后单击“OK”按钮。系统默认下使用最小二乘法(OLS)进行估计。此时,回归模型估计后的残差保存在默认序

    13、列对象resid中。110110五、协整和误差修正模型1、协整 EG两步 检验法(EViews操作):第三步:第三步,检验残差序列的平稳性。建立新序列对象e,将残差序列resid中的数据复制到序列e中。对序列e进行单位根检验。如果残差序列是平稳的,即不存在单位根。则变量之间协整关系存在。五、协整和误差修正模型2、误差修正模型(ECM)误差修正模型是根据一阶自回归分布滞后模型生成的,如一阶分布滞后模型为yt=0+1yt-1+2xt+3xt-1 +t 在上式的两端同时减去yt-1,再在等式的右侧加减2 xt-1,整理可得,yt=0+(11)yt-1+2xt+(2+3)xt-1 +t yt=(11)

    14、+xt-1+yt-1 +2xt+t 该式即为误差修正模型。误差修正模型中描述了被解释变量的短期波动yt情况。1132NoImage五、协整和误差修正模型2、误差修正模型(ECM)EViews操作第一步:检验变量间是否存在协整关系,如存在可建立ECM模型。第二步:选择主菜单工具栏中的“Quick”|“Estimate Equation”选项,在弹出的文本框中输入误差修正模型的变量,用最小二乘法(OLS)进行估计,单击“确定”按钮即可得到误差修正模型的估计结果。本章小结:了解随机过程的基本概念 了解随机游走和白噪声过程的不同 掌握ARMA模型的建立方法 掌握协整理论和检验方法 掌握误差修正模型的理论和建立方法

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:Eviews数据统计与分析教程8章时间序列模型-协整理论课件.ppt
    链接地址:https://www.163wenku.com/p-4300987.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库