离散型随机变量的方差公开课课件.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《离散型随机变量的方差公开课课件.pptx》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 离散 随机变量 方差 公开 课件
- 资源描述:
-
1、 X P 一般地一般地,若离散型随机变量若离散型随机变量X的概率分布为的概率分布为ip2x2pnpix1x1pnx 则称则称 为随机变量为随机变量X的的均值均值或或数学期望数学期望,数学期望又简称为数学期望又简称为期望期望。(1)随机变量均值的线性性质随机变量均值的线性性质 若若B(n,p),则,则E()=np(2)服从二项分布的均值服从二项分布的均值(3)服从参数为服从参数为N,M,n的超几何分布,它的均值的超几何分布,它的均值NMnE)(3.3.求离散型随机变量的数学期望的方法求离散型随机变量的数学期望的方法.公式法公式法:已知是二项分布或超几何分布,直接代用公式已知是二项分布或超几何分布
2、,直接代用公式定义法定义法:其它分布的随机变量,先求出分布列,在对应求均值。其它分布的随机变量,先求出分布列,在对应求均值。复习复习 nniipxpxpxpxXE2211)(bXaEbaXE)()(、探究探究 要从两名同学中挑选出一名,代表班级参加射击比赛要从两名同学中挑选出一名,代表班级参加射击比赛.根据以往的成绩记录,第一名同学击中目标靶的环数根据以往的成绩记录,第一名同学击中目标靶的环数 的的分布列为分布列为1X1XP56789100.030.090.200.310.270.10第二名同学击中目标靶的环数第二名同学击中目标靶的环数 的分布列为的分布列为2X2XP567890.010.05
3、0.200.410.33应该派哪名同学参赛?应该派哪名同学参赛?1,E X2E X88 看来选不出谁参赛了,看来选不出谁参赛了,谁能帮帮我?谁能帮帮我?我们知道,当样本平均值相差不大时,可以利我们知道,当样本平均值相差不大时,可以利用样本方差考察样本数据与样本平均值的偏离用样本方差考察样本数据与样本平均值的偏离程度程度X1x2xnxP1p2pnp 能否用一个类似于样本方差的量来刻画随机能否用一个类似于样本方差的量来刻画随机变量的波动程度呢?变量的波动程度呢?离散型随机变量取值的方差离散型随机变量取值的方差一般地,若离散型随机变量一般地,若离散型随机变量X的概率分布为:的概率分布为:nniipX
4、ExpXExpXExXD22121)()()()()()()(则称则称为随机变量为随机变量X的的方差方差。niiipXEx12)()(P1xix2x1p2pipnxnpX称称)(XD为随机变量为随机变量X的的标准差标准差。它们都是反映离散型随机变量偏离于均值的平它们都是反映离散型随机变量偏离于均值的平均程度的量,它们的值越小,则随机变量偏离均程度的量,它们的值越小,则随机变量偏离于均值的平均程度越小,即越集中于均值。于均值的平均程度越小,即越集中于均值。例例1.已知随机变量已知随机变量X的分布列的分布列X01234P0.10.20.40.20.1求求D(X)和)和 。21.042.034.02
5、2.011.00 EX解:解:2.11.0)24(2.0)23(4.0)22(2.0)21(1.0)20(22222 DX095.12.1)(XD 公式运用公式运用)(XD 、公式运用公式运用1、请分别计算探究中两名同学各自的射击成绩的方差、请分别计算探究中两名同学各自的射击成绩的方差.1XP56789100.030.090.200.310.270.102XP567890.010.050.200.410.33因此第一名同学的射击成绩稳定性较差,第二名同学的射击因此第一名同学的射击成绩稳定性较差,第二名同学的射击成绩稳定性较好,稳定于成绩稳定性较好,稳定于8环左右环左右.82.0)XD5.1XD
展开阅读全文