高中数学-排列组合经典课件-新人教A选修2.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高中数学-排列组合经典课件-新人教A选修2.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 排列组合 经典 课件 新人 选修 下载 _人教A版_数学_高中
- 资源描述:
-
1、从n个不同元素中,任取m个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.2.2.组合的定义组合的定义:从n个不同元素中,任取m个元素,并成一组,叫做从n个不同元素中取出m个元素的一个组合.3.3.排列数公式排列数公式:4.4.组合数公式组合数公式:1.1.排列的定义排列的定义:)!(!)1()2)(1(mnnmnnnnAmn排列与组合的区别与联系排列与组合的区别与联系:与顺序有关的与顺序有关的为排列问题为排列问题,与顺序无关的为组合问题与顺序无关的为组合问题.)!(!)1()2)(1(mnmnmmnnnnAACmmmnmn例例1.由由0,1,2,3,4,5可以组成多
2、少个没有重复数字可以组成多少个没有重复数字 五位奇数五位奇数.解解:由于末位和首位有特殊要求由于末位和首位有特殊要求,应该优先安应该优先安 排排,以免不合要求的元素占了这两个位置以免不合要求的元素占了这两个位置先排末位共有先排末位共有_ 然后排首位共有然后排首位共有_最后排其它位置共有最后排其它位置共有_13C13C14C14C34A34A由分步计数原理得由分步计数原理得=28813C14C34A 7 7种不同的花种在排成一列的花盆里种不同的花种在排成一列的花盆里,若两若两种葵花不种在中间,也不种在两端的花盆种葵花不种在中间,也不种在两端的花盆里里,问有多少不同的种法?问有多少不同的种法?25
3、451440A A练习题练习题例例2.72.7人站成一排人站成一排,其中甲乙相邻且丙丁相其中甲乙相邻且丙丁相 邻邻,共有多少种不同的排法共有多少种不同的排法.甲甲乙乙丙丙丁丁由分步计数原理可得共有由分步计数原理可得共有种不同的排法种不同的排法55A22A22A=480解:解:练习题练习题5个男生个男生3个女生排成一排个女生排成一排,3个女生个女生要排在一起要排在一起,有多少种不同的排法有多少种不同的排法?3366AA共有 =4320种不同的排法.55A第二步将第二步将4 4舞蹈插入第一步排舞蹈插入第一步排好的好的6 6个元素中间包含首尾两个空位共有个元素中间包含首尾两个空位共有种种 不同的方法
4、不同的方法 46A由分步计数原理,节目的不同顺序共有 种55A46A相相相相独独独独独独某班新年联欢会原定的某班新年联欢会原定的5 5个节目已排成节个节目已排成节目单,开演前又增加了两个新节目目单,开演前又增加了两个新节目.如果如果将这两个新节目插入原节目单中,且两将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数个新节目不相邻,那么不同插法的种数为(为()30练习题练习题四四.定序问题倍缩空位插入策略定序问题倍缩空位插入策略例例4.74.7人排队人排队,其中甲乙丙其中甲乙丙3 3人顺序一定共有多人顺序一定共有多 少种不同的排法少种不同的排法解:(空位法空位法)设想有)设想有
5、7 7把椅子让除甲乙丙以外把椅子让除甲乙丙以外的四人就坐共有的四人就坐共有 种方法,其余的三个种方法,其余的三个位置甲乙丙共有位置甲乙丙共有 种坐法,则共有种坐法,则共有 种种 方法方法 47A147A思考思考:可以先让甲乙丙就坐吗可以先让甲乙丙就坐吗?(插入法插入法)先排甲乙丙三个人先排甲乙丙三个人,共有共有1 1种排法种排法,再再 把其余把其余4 4四人四人依次依次插入共有插入共有 方法方法4 4*5 5*6 6*7 7练习题期中安排考试科目9门,语文要在数学之前考,有多少种不同的安排顺序?9921A(倍缩法倍缩法)对于某几个元素顺序一定的排列问题对于某几个元素顺序一定的排列问题,可先把可
6、先把这几个元素与其他元素一起进行排列这几个元素与其他元素一起进行排列,然后用总排列数然后用总排列数除以除以这几个元素之间的全排列数这几个元素之间的全排列数,则共有不同排法种数则共有不同排法种数是:是:7733AA定序问题可以用倍缩法,还可转化为占位插入模型处理定序问题可以用倍缩法,还可转化为占位插入模型处理五五.重排问题求幂策略重排问题求幂策略例例5.5.把把6 6名实习生分配到名实习生分配到7 7个车间实习个车间实习,共有共有 多少种不同的分法多少种不同的分法解解:完成此事共分六步完成此事共分六步:把第一名实习生分配把第一名实习生分配 到车间有到车间有 种分法种分法.7 7把第二名实习生分把
7、第二名实习生分配配 到车间也有到车间也有7 7种分法,种分法,依此类推依此类推,由分步由分步计计数原理共有数原理共有 种不同的排法种不同的排法67 一般地一般地n不同的元素没有限制地安排在不同的元素没有限制地安排在m个位置上的排列数为个位置上的排列数为 种种 n nm m1、纪律是集体的面貌,集体的声音,集体的动作,集体的表情,集体的信念。2、知之者不如好之者,好之者不如乐之者。3、反思自我时展示了勇气,自我反思是一切思想的源泉。4、在教师手里操着幼年人的命运,便操着民族和人类的命运。一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。5、诚实比一切智谋更好,而且它是智谋的基本条件。6
8、、做老师的只要有一次向学生撒谎撒漏了底,就可能使他的全部教育成果从此为之失败。2022年11月2022-11-272022-11-272022-11-2711/27/20227、凡为教者必期于达到不须教。对人以诚信,人不欺我;对事以诚信,事无不成。2022-11-272022-11-27November 27,20228、教育者,非为已往,非为现在,而专为将来。2022-11-272022-11-272022-11-272022-11-27 某某8 8层大楼一楼电梯上来层大楼一楼电梯上来8 8名乘客人名乘客人,他们他们 到各自的一层下电梯到各自的一层下电梯,下电梯的方法下电梯的方法()87练习
9、题练习题例例6.6.有有5 5个不同的小球个不同的小球,装入装入4 4个不同的盒内个不同的盒内,每盒至少装一个球每盒至少装一个球,共有多少不同的装共有多少不同的装 法法.解解:第一步从第一步从5 5个球中选出个球中选出2 2个组成复合元共个组成复合元共 有有_种方法种方法.再把再把5 5个元素个元素(包含一个复合包含一个复合 元素元素)装入装入4 4个不同的盒内有个不同的盒内有_种方法种方法.25C44A根据分步计数原理装球的方法共有根据分步计数原理装球的方法共有_25C44A练习题练习题一个班有一个班有6 6名战士名战士,其中正副班长各其中正副班长各1 1人人现从中选现从中选4 4人完成四种
10、不同的任务人完成四种不同的任务,每人每人完成一种任务完成一种任务,且正副班长有且只有且正副班长有且只有1 1人人参加参加,则不同的选法有则不同的选法有_ _ 种种192192七.元素相同问题隔板策略例例7.有有1010个运动员名额,在分给个运动员名额,在分给7 7个班,每个班,每班至少一个班至少一个,有多少种分有多少种分配方案?配方案?解:因为解:因为10个名额没有差别,把它们排成一排。相邻名额之间形个名额没有差别,把它们排成一排。相邻名额之间形成个空隙。成个空隙。在个空档中选个位置插个隔板,可把名额分成份,对应地分给个在个空档中选个位置插个隔板,可把名额分成份,对应地分给个班级,每一种插板方
展开阅读全文