第21章:时间序列计量经济学-课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《第21章:时间序列计量经济学-课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 21 时间 序列 计量 经济学 课件
- 资源描述:
-
1、时间序列计量经济学模型的理论与方法时间序列计量经济学模型的理论与方法第一节第一节 时间序列的平稳性及其检验时间序列的平稳性及其检验第二节第二节 随机时间序列模型的识别和估计随机时间序列模型的识别和估计第三节第三节 协整分析与误差修正模型协整分析与误差修正模型21.1 21.1 时间序列的平稳性及其检验时间序列的平稳性及其检验一、问题的引出:非平稳变量与经典回归一、问题的引出:非平稳变量与经典回归模型模型二、时间序列数据的平稳性二、时间序列数据的平稳性三、平稳性的图示判断三、平稳性的图示判断四、平稳性的单位根检验四、平稳性的单位根检验五、单整、趋势平稳与差分平稳随机过程五、单整、趋势平稳与差分平
2、稳随机过程一、问题的引出:非平稳变量与经典一、问题的引出:非平稳变量与经典回归模型回归模型常见的数据类型常见的数据类型到目前为止,经典计量经济模型常用到的数据有:到目前为止,经典计量经济模型常用到的数据有:时间序列数据时间序列数据(time-series data);截面数据截面数据(cross-sectional data)平行平行/面板数据面板数据(panel data/time-series cross-section data)时间时间序列数据是最常见,也是最常用到的数据序列数据是最常见,也是最常用到的数据。经典回归模型与数据的平稳性经典回归模型与数据的平稳性 经典回归分析经典回归分析
3、暗含暗含着一个重要着一个重要假设假设:数据是平稳的。数据是平稳的。数据非平稳数据非平稳,大样本下的统计推断基础,大样本下的统计推断基础“一致一致性性”要求要求被破怀。被破怀。经典回归分析的假设之一:解释变量经典回归分析的假设之一:解释变量X是非随机变是非随机变量量 放宽该假设:放宽该假设:X是随机变量,则需进一步要求:是随机变量,则需进一步要求:(1)X与随机扰动项与随机扰动项 不相关不相关 Cov(X,)=0nXXi/)(2QnXXPin)/)(2lim依概率收敛:依概率收敛:(2)第(2)条是为了满足统计推断中大样本下的“一致性”特性:)(limnPnxnuxxuxiiiiii/22Qnx
4、PnuxPPiiin0/lim/limlim2第(1)条是OLS估计的需要如果如果X是非平稳数据是非平稳数据(如表现出向上的趋势),(如表现出向上的趋势),则(则(2)不成立,回归估计量不满足)不成立,回归估计量不满足“一致性一致性”,基,基于大样本的统计推断也就遇到麻烦。于大样本的统计推断也就遇到麻烦。因此:注意:注意:在双变量模型中:在双变量模型中:表现在表现在:两个本来没有任何因果关系的变量,却两个本来没有任何因果关系的变量,却有很高的相关性有很高的相关性(有较高的R2):例如:例如:如果有两列时间序列数据表现出一致的变化趋势(非平稳的),即使它们没有任何有意义的关系,但进行回归也可表现
5、出较高的可决系数。在现实经济生活中在现实经济生活中:情况往往是实际的时间序列数据是非平稳的实际的时间序列数据是非平稳的,而且主要的经济变量如消费、收入、价格往往表现为一致的上升或下降。这样,仍然通过经典的因果关仍然通过经典的因果关系模型进行分析,一般不会得到有意义的结果。系模型进行分析,一般不会得到有意义的结果。数据非平稳,往往导致出现数据非平稳,往往导致出现“虚假回归虚假回归”问题问题 时间序列分析时间序列分析模型方法模型方法就是在这样的情况下,以通过揭示时间序列自身的变化规律为主线而发以通过揭示时间序列自身的变化规律为主线而发展起来的全新的计量经济学方法论展起来的全新的计量经济学方法论。时
6、间序列分析时间序列分析已组成现代计量经济学的重要内容,并广泛应用于经济分析与预测当中。二、时间序列数据的平稳性二、时间序列数据的平稳性 时间序列分析中首先遇到的问题首先遇到的问题是关于时间序列数据的平稳性平稳性问题。假定某个时间序列是由某一假定某个时间序列是由某一随机过程随机过程(stochastic process)生成的,即假定时间序列生成的,即假定时间序列Xt(t=1,2,)的每一个数值都是从一个概率分布中随机得到,如果的每一个数值都是从一个概率分布中随机得到,如果满足下列条件:满足下列条件:1)均值)均值E(XE(Xt t)=)=是是与时间与时间t 无关的常数;无关的常数;2)方差)方
7、差Var(XVar(Xt t)=)=2 2是是与时间与时间t 无关的常数;无关的常数;3)协方差)协方差Cov(XCov(Xt t,X,Xt+kt+k)=)=k k 是是只与时期间隔只与时期间隔k有关,有关,与时间与时间t 无关的常数;无关的常数;则称该随机时间序列是则称该随机时间序列是平稳的平稳的(stationary),而该而该随机过程是一随机过程是一平稳随机过程平稳随机过程(stationary stochastic process)。)。平稳随机过程 某一随机过程的均值和方差都为与实践无关的常数,并且在任何两期之间的协方差值仅仅依赖于该两期间的距离和滞后,而不依赖于计算的时间,这一随机
8、过程就为平稳过程。简言之,若一个时间序列是平稳的,则不管在什么时间测量,它的均值、方差和(各种滞后的)自协方差都保持不变,即它们都不随时间而变化。平稳时间序列有回到其均值的趋势,可以称之为均值回复过程均值回复过程,围绕均值波动且有大致恒定的振幅。222()0()()0(0,)tttttEEEttN:零 均 值:同 方 差:无 自 相 关:满 足 上 述 三 个 条 件 的 随 机 过 程 为,白 噪 声 过 程 为 弱 平 稳 过 程。若 再 加 上 不 同 时 间 的 各 个是 独 立 的,即:,独 立,则 称 为。若 上 述 条 件 成 立,且:白 噪 声则过 程白 噪 声 过 程独 立
9、白 噪 声 过 程高 斯 白 噪称 该 过 程 为声 过 程。严平稳的定义 非平稳过程非平稳过程 若某一过程不满足上述平稳过程定义中的某一条性质,即均值、方差和协方差都随时间而变化,或者其一会随时间变化,都为非平稳过程 随机游走过程就是非平稳过程 随机游走过程分为:(1)不带漂移的随机游走(即不存在常数项或截距项)(2)带漂移的随机游走(出现常数项或截距项)21101212012333012300tttttttuYYuYYYuYYuYuuYYuYuuuYYu:假设:是均值为 和方差为的白噪声过程。则称 序列为随机游走过程。不带漂移项的随机游走过程(可以得出:不含 有截距项)002()()()v
10、ar()tttE YE YuE YYtYt期望:方差:可见,的均值等于初始值为一个常数。但是随着时间 的增加,其方差会随着时间而增大,因此违背了平稳性条件。因此,不带漂移的随机游走过程是非平稳的随机过程。随机游走过程中,随机冲击具有持久性,一个特定的冲击永远不会消失,随机游走过程会永远记住每次冲击,具有无限记忆性质。21110121201233301230023tttttttttttuYYuYYYuYYYuYYuYuuYYuYuuuYYtu:假 设:是 均 值 为 和 方 差 为的 白 噪 声 过 程。其 中为 漂 移 参 数。()根 据为 正 或带 漂 移 项 的 随 机 游 走 过 程(含
11、 有 截 距 项负 而 向 上 或 向 下 漂 移。可 以 得 出:)002()()var()tttE YE YtuYtYttY期望:方差:可见,随着时间 的增加,的均值和方差会随着时间而增大,因此违背了平稳性条件。因此,带漂移的随机游走过程也是非平稳的随机过程。1ttttYYYu 随机游走过程虽然是非平稳的,我们进行差分:()因此,一阶差分后的过程为平稳过程。通常,非平稳过程的差分过程会变为平稳过程,后面的单位根检验会详细讲述。后面将会看到后面将会看到:如果一个时间序列是非平稳的,如果一个时间序列是非平稳的,它常常可通过取差分的方法而形成平稳序列它常常可通过取差分的方法而形成平稳序列。事实上
12、,事实上,随机游走过程随机游走过程是下面我们称之为是下面我们称之为1 1阶自回阶自回归归AR(1)AR(1)过程过程的特例的特例 X Xt t=X Xt-1t-1+t 不难验证不难验证:1)|1|1时,该随机过程生成的时间序列是时,该随机过程生成的时间序列是发散的,表现为持续上升发散的,表现为持续上升(1)1)或持续下降或持续下降(-1)-1),因此是非平稳的,这种非平稳归因于过程中存在某因此是非平稳的,这种非平稳归因于过程中存在某种趋势;种趋势;只有当只有当-1-1 10,样本自相关系数近似地服从以样本自相关系数近似地服从以0为均值,为均值,1/n 为方差的正态分布,其中为方差的正态分布,其
13、中n为样本数。为样本数。也可检验对所有也可检验对所有k0k0,自相关系数都为自相关系数都为0 0的联合的联合假设,这可通过如下假设,这可通过如下Q QLBLB统计量进行:统计量进行:该统计量近似地服从自由度为m的2分布(m为滞后长度)。因此:如果计算的如果计算的Q Q值大于显著性水平值大于显著性水平为为 的临界值,则有的临界值,则有1-1-的把握拒绝所有的把握拒绝所有 k k(k0)(k0)同时为同时为0 0的假设。的假设。例例9.1.3:9.1.3:表表9.1.19.1.1序列序列Random1Random1是通过是通过一随机过程(随机函数)生成的有一随机过程(随机函数)生成的有1919个样
14、个样本的随机时间序列。本的随机时间序列。mkkLBknrnnQ12)2(表表 9 9.1 1.1 1 一一个个纯纯随随机机序序列列与与随随机机游游走走序序列列的的检检验验 序号 Random1 自相关系数 kr(k=0,1,17)LBQ Random2 自相关系数 kr(k=0,1,17)LBQ 1-0.031 K=0,1.000 -0.031 1.000 2 0.188 K=1,-0.051 0.059 0.157 0.480 5.116 3 0.108 K=2,-0.393 3.679 0.264 0.018 5.123 4-0.455 K=3,-0.147 4.216-0.191-0.0
15、69 5.241 5-0.426 K=4,0.280 6.300-0.616 0.028 5.261 6 0.387 K=5,0.187 7.297-0.229-0.016 5.269 7-0.156 K=6,-0.363 11.332-0.385-0.219 6.745 8 0.204 K=7,-0.148 12.058-0.181-0.063 6.876 9-0.340 K=8,0.315 15.646-0.521 0.126 7.454 10 0.157 K=9,0.194 17.153-0.364 0.024 7.477 11 0.228 K=10,-0.139 18.010-0.13
16、6-0.249 10.229 12-0.315 K=11,-0.297 22.414-0.451-0.404 18.389 13-0.377 K=12,0.034 22.481-0.828-0.284 22.994 14-0.056 K=13,0.165 24.288-0.884-0.088 23.514 15 0.478 K=14,-0.105 25.162-0.406-0.066 23.866 16 0.244 K=15,-0.094 26.036-0.162 0.037 24.004 17-0.215 K=16,0.039 26.240-0.377 0.105 25.483 18 0.1
17、41 K=17,0.027 26.381-0.236 0.093 27.198 19 0.236 0.000 容易验证:该样本序列的均值为该样本序列的均值为0 0,方差为,方差为0.07890.0789。(a)(b)-0.6-0.4-0.20.00.20.40.624681012141618RANDOM1-0.8-0.40.00.40.81.224681012141618RANDOM1AC 从图形看:它在其样本均值它在其样本均值0 0附近上下波动,且样本自相关附近上下波动,且样本自相关系数迅速下降到系数迅速下降到0 0,随后在,随后在0 0附近波动且逐渐收敛于附近波动且逐渐收敛于0 0。由于该
18、序列由一随机过程生成,可以认为不存在序列相关性,因此该序列为一白噪声。该序列为一白噪声。根据Bartlett的理论:kN(0,1/19)因此任一rk(k0)的95%的置信区间都将是 可以看出可以看出:k0k0时,时,r rk k的值确实落在了该区间内,的值确实落在了该区间内,因此可以接受因此可以接受 k k(k0)k0)为为0 0的假设的假设。同样地,从从Q QLBLB统计量的计算值看,滞后统计量的计算值看,滞后1717期期的计算值为的计算值为26.3826.38,未超过,未超过5%5%显著性水平的临界值显著性水平的临界值27.5827.58,因此,因此,可以接受所有的自相关系数可以接受所有的
展开阅读全文