二项式定理杨辉三角课件新人教A版-选修-.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《二项式定理杨辉三角课件新人教A版-选修-.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二项式 定理 三角 课件 新人 选修
- 资源描述:
-
1、1.3.2 1.3.2 二项式定理二项式定理-杨辉三角杨辉三角 把(把(a+b)n展开式的二项式系数取出来,展开式的二项式系数取出来,当当n依次取依次取1,2,3,时,可列成下表:时,可列成下表:(a+b)11 1(a+b)21 2 1(a+b)31 3 3 1(a+b)41 4 6 4 1(a+b)51 5 10 10 5 1(a+b)6 1 6 15 20 15 6 1上面的表叫做上面的表叫做二项式系数表二项式系数表(杨辉三角杨辉三角)1 在我国在我国,很早很早就有人研究过二就有人研究过二项式系数表项式系数表,南南宋数学家杨辉在宋数学家杨辉在其所著的其所著的详解详解九章算法九章算法中就中就
2、有出现有出现.详解九章算法详解九章算法中记载的表中记载的表(a+b)1 1 1(a+b)21 2 1(a+b)31 3 3 1(a+b)41 4 6 4 1(a+b)51 5 10 10 5 1(a+b)61 6 15 20 15 6 1观察二项式系数表,寻求其规律:观察二项式系数表,寻求其规律:31015 不难发现不难发现,表中每行两端都是表中每行两端都是1 1,而且除,而且除1 1以外的每以外的每一个数都等于它肩上两个数的和一个数都等于它肩上两个数的和.事实上,设表中任一事实上,设表中任一不为不为1 1的数为的数为Cn+1r,那么它肩上的两个数分别为,那么它肩上的两个数分别为Cnr-1及及
3、Cnr,知道,知道Cn+1+1r=Cnr-1-1+Cnr 这就是这就是组合数的性质组合数的性质2 2.(1)(1)对称性对称性:与首末两端与首末两端“等距离等距离”的两个二项式系数相等的两个二项式系数相等(a+b)n展开式的二项式系数依次是展开式的二项式系数依次是:012,.rnnnnnnCCCCC,,(2)(2)递推性递推性:除除1 1以外的每一个数都以外的每一个数都等于它肩上两个数的和等于它肩上两个数的和.(a+b)n展开式的二项式系数依次是展开式的二项式系数依次是:012,.rnnnnnnCCCCC,,(3)(3)增减性与最大值增减性与最大值.增减性的实质是比较增减性的实质是比较 的大小
4、的大小.1kknnCC 与与从第一项起至中间项从第一项起至中间项,二项式系数逐渐增大二项式系数逐渐增大,随随后又逐渐减小后又逐渐减小.1!1!1!()!(1)!(1)!kknnnn knn kCCk n kkkn kk (4)(4)各二项式系数的和各二项式系数的和.0122rnnnnnnnCCCCC 可运用函数的观点,结合可运用函数的观点,结合“杨辉三角杨辉三角”和函数图象,和函数图象,研究二项式系数的性质研究二项式系数的性质 (a+b)n展开式的二项式系数展开式的二项式系数是是 可看成是以可看成是以r为自变量的函为自变量的函数数f(r),),其定义域是其定义域是0,1,2,0,1,2,n,当
5、当n=6=6时,其图象时,其图象是右图中的是右图中的7 7个孤立点个孤立点.012,.rnnnnnnCCCCC,,rnC.-1084621620f(r).369r例例1 1、试证明在、试证明在(a+b)n的展开式中,奇数项的二项式系的展开式中,奇数项的二项式系数的和等于偶数项的二项式系数的和数的和等于偶数项的二项式系数的和.即证:即证:021312nnnnnCCCC 证明:在展开式证明:在展开式 中中 令令a=1,b=1得得011nnnnnnnC aC abC b 0123(11)(1)nnnnnnnnCCCCC 02130nnnnCCCC即即0213nnnnCCCC 启示:在二项式定理中启示
6、:在二项式定理中,对对a,b赋予一些特定的值赋予一些特定的值,是解决二项式有关问题的一种重要方法是解决二项式有关问题的一种重要方法赋值法赋值法。23012301230123024613570()(1)(2)(1)(3)(4)(5)nnnnnf xaa xa xa xa xaaaaaaaaaaaaaaaaaaa 基基 础础梳梳 理理f(1)f(0)f(1)题型一求展开式的系数和题型一求展开式的系数和例例2已知已知(12x)7a0a1 xa2x2a7x7.求:求:(1)a1a2a7;(2)a1a3a5a7;(3)a0a2a4a6;(4)|a0|a1|a2|a7|.解析解析:(1)令令x0,则则a0
7、171;令令x1,则则a0a1a2a7(12)71.a1a2a7112.(2)令令x1,则,则题型二二项式系数的性质题型二二项式系数的性质练习练习在在(3x-2y)20的展开式中,求:的展开式中,求:(1)(1)二项式系数最二项式系数最大的项大的项;(2);(2)系数绝对值最大的项系数绝对值最大的项;(3);(3)系数最大的项系数最大的项;解解:(2):(2)设系数绝对值最大的项是第设系数绝对值最大的项是第r+1r+1项项.则则2011912020201211202032323232rrrrrrrrrrrrCCCC 即即 3(r+1)2(20-r)得得 2(21-r)3r所以当所以当r=8时,
8、系数绝对值最大的项为时,系数绝对值最大的项为227855r812812892032TCx y(3)因为系数为正的项为奇数项,故可)因为系数为正的项为奇数项,故可设第设第2r-1项系数最大。(以下同项系数最大。(以下同2)r=5.即即 3(r+1)2(20-r)得得 2(21-r)3r所以当所以当r=8时,系数绝对值最大的项为时,系数绝对值最大的项为528527 r812812820923yxCT 1.1.当当n n 1010时常用杨辉三角处理二项式时常用杨辉三角处理二项式系数问题系数问题;2.2.利用杨辉三角和函数图象可得二项式利用杨辉三角和函数图象可得二项式系数的对称性、增减性和最大值系数的
9、对称性、增减性和最大值;3.3.常用赋值法解决二项式系数问题常用赋值法解决二项式系数问题.11醉翁亭记 1反复朗读并背诵课文,培养文言语感。2结合注释疏通文义,了解文本内容,掌握文本写作思路。3把握文章的艺术特色,理解虚词在文中的作用。4体会作者的思想感情,理解作者的政治理想。一、导入新课范仲淹因参与改革被贬,于庆历六年写下岳阳楼记,寄托自己“先天下之忧而忧,后天下之乐而乐”的政治理想。实际上,这次改革,受到贬谪的除了范仲淹和滕子京之外,还有范仲淹改革的另一位支持者北宋大文学家、史学家欧阳修。他于庆历五年被贬谪到滁州,也就是今天的安徽省滁州市。也是在此期间,欧阳修在滁州留下了不逊于岳阳楼记的千
10、古名篇醉翁亭记。接下来就让我们一起来学习这篇课文吧!【教学提示】结合前文教学,有利于学生把握本文写作背景,进而加深学生对作品含义的理解。二、教学新课目标导学一:认识作者,了解作品背景作者简介:欧阳修(10071072),字永叔,自号醉翁,晚年又号“六一居士”。吉州永丰(今属江西)人,因吉州原属庐陵郡,因此他又以“庐陵欧阳修”自居。谥号文忠,世称欧阳文忠公。北宋政治家、文学家、史学家,与韩愈、柳宗元、王安石、苏洵、苏轼、苏辙、曾巩合称“唐宋八大家”。后人又将其与韩愈、柳宗元和苏轼合称“千古文章四大家”。关于“醉翁”与“六一居士”:初谪滁山,自号醉翁。既老而衰且病,将退休于颍水之上,则又更号六一居
展开阅读全文