书签 分享 收藏 举报 版权申诉 / 27
上传文档赚钱

类型MBA统计学第10课课件.ppt

  • 上传人(卖家):晟晟文业
  • 文档编号:4290520
  • 上传时间:2022-11-26
  • 格式:PPT
  • 页数:27
  • 大小:185.45KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《MBA统计学第10课课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    MBA 统计学 10 课件
    资源描述:

    1、Relationship among variables Functional relationship Statistical relationship(correlation)Y depends on X,but isnt merely determined by X.Example:price and sales daily high temperaturethe demand for air-conditioning RegressionAccording to observed data,establish regression equation and make statistic

    2、al reference(predict).Chapter 10(P 227)Correlation and Regression Analysis1What does regression do?Solve the following problems:qDetermine whether there is statistical relationship among variables,if does,give the regression equation.qForecast the value of another variable(dependent)according to one

    3、 variable or a group of variables(independent).2Example:X-price,Y-sales for a kind of productWe collect data:1.1.Scatter plot2.2.Regression equation(the Least Square Estimation)3.3.Correlation coefficient(Testing the regression model)4.4.Forecasting(point and interval forecasting)Simple Linear Regre

    4、ssionX(Yuan)X(Yuan)707080809090100100110110Y(thousand)Y(thousand)11.2511.2511.2811.2811.6511.6511.7011.7012.1412.143Linear Regression ModelVariables consist of a linear function.YXiii 01SlopeY-InterceptIndependent(Explanatory)VariableDependent(Response)Variable Random Error4Sample Linear Regression

    5、Modelei=random errorYXYbb Xeiii01Ybb Xii01Sampled Observed Value5Sample Linear Regression ModelThe least squares method provides an estimated regression equation that minimizes the sum of squared deviations between the observed values of the dependent variable yi and the estimated values of the depe

    6、ndent variable .6Least Squares estimatione2YXe1e3e4Ybb Xeiii01Ybb Xii01OLS Min eeeeeii2112223242Predicted Value7Coefficient&EquationYbXbX YnXYXn XbYb Xiiiiiniin011122101Sample regression equationSlope for the estimated regression equationP 238 (10.17)Intercept for the estimated regression equationb8

    7、Evaluating the Modelq Significance Testq Test Coefficient of Determination and Standard Deviation of Estimationq Residual AnalysisY b bXii 019Measures of Variation in Regression SST=SSR+SSE 1.Total Sum of Squares(SST)P 239(10.20)Measure the variation between the observed value Yi and the mean Y.2.Su

    8、m of Squares due to Regression(SSR)Variation caused by the relationship between X and Y.3.Sum of Squares due to Error(SSE)Variation caused by other factors.10Variation MeasuresYX YXiSST (Yi-Y)2 SSE (Yi-Yi)2 SSR(Yi-Y)2 Yi Ybb Xii0111Coefficient of Determination 0 r2 1rbYbX Yn YYn Yiiiininiin201211212

    9、Explained variation Total variationSSRSSTA measure of the goodness of fit of the estimated regression equation.It can be interpreted as the proportion of the variation in the dependent variable y that is explained by the estimated regression equation.12Correlation CoefficientA numerical measure of l

    10、inear association between two variables that takes values between 1 and+1.Values near+1 indicate a strong positivelinear relationship,values near 1 indicate a strong negative linear relationship,and values near zero indicate lack of a linear relationship.n12n12n1iii)yy()xx(yxii)y)(x(r n1iiyn1y n1iix

    11、n1x13Coefficients of Determination(r2)and Correlation(r)r2=1,r2=0,YYi=b0+b1XiXYYi=b0+b1XiXYYi=b0+b1XiXYYi=b0+b1XiXr=+1r=-1r=+0.9r=014Test of Slope Coefficient for Significance1.Tests a Linear Relationship Between X&Y 2.Hypotheses H0:1=0(No Linear Relationship)H1:1 0(Linear Relationship)3.Test Statis

    12、ticniXniXYXSbSbSbnt12)(21where112115Example Test of Slope CoefficientH0:1=0H1:1 0 .05df 5-2 =3Critical value:Statistic:Determine:Conclusion:tbSb 1110700019153655.Reject at =0.05There is evidence of a relationship.t0 3.1824-3.1824.025RejectReject.02516Multiple Regression ModelThere exists linear rela

    13、tionship among an dependent variable and two or more than two independent variables.YXXXiiiPPii01122slope of populationintercept of population Yrandom errorDependent VariableIndependent Variables17Example:New York Times You work in the advertisement department of New York Times(NYT).You will find to

    14、 what extent do ads size(square inch)and publishing volume(thousand)influence the response to ads(hundred).You have collected the following data:response size volume112488131357264410618Example(NYT)Computer Output Parameter Estimates Parameter Standard T for H0:Variable DF Estimate Error Param=0 Pro

    15、b|T|INTERCEP 1 0.0640 0.2599 0.246 0.8214ADSIZE 1 0.2049 0.0588 3.656 0.0399CIRC 1 0.2805 0.0686 4.089 0.0264 b2b0bPb119Interpretation of Coefficients 1.Slope(b1)If the publishing volume remains unchanged,when ads sizeincreases one square inch,the response is expected to increase 0.2049 hundred time

    16、s.2.Slope(b2)If ads size remains unchanged,when publishing volume increases one thousand,the response is expected to in-crease 0.2805 hundred times.20Evaluating the Model1.How does the model describe the relationship among variables?2.Closeness of Best Fit3.Assumptions met4.Significance of estimates

    17、5.Correlation among variables6.Outliers(unusual observations)21Testing Overall Significance1.Test whether there is linear relationship between Y and all the independent variables.2.2.Use F statistic.3.Hypothesis4.H0:1=2=.=P=0 5.There is no linear relationship between Y and independent variables.H1:A

    18、t least there is a coefficient isnt equal to 0.At least there is an independent variable influences Y22Testing Overall Significance Computer OutputAnalysis of Variance Sum of Mean Source DF Squares Square F Value ProbFModel 2 9.2497 4.6249 55.440 0.0043Error 3 0.2503 0.0834C Total 5 9.5000Pn-P-1n-1MSR/MSEp Value23Transformations in Regression ModelsqNon-linear models that can be transformed into linear models(convenient to carry out OLS).qData TransformationqMultiplicative Model ExampleYXXYXXiiiiiiii0120112212lnlnlnlnln24Square-Root TransformationYXXiiii011221 01 01 01 0YX127

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:MBA统计学第10课课件.ppt
    链接地址:https://www.163wenku.com/p-4290520.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库