导数的计算(一)课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《导数的计算(一)课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 导数 计算 课件
- 资源描述:
-
1、一、复习一、复习1.导数的几何意义导数的几何意义导数的物理物理意义导数的物理物理意义2.求函数的导数的方法是求函数的导数的方法是:(1)()();yf xxf x 求函数的增量(2):()();yf xxf xxx求函数的增量与自变量的增量的比值0(3)()lim.xyyfxx 求极限,得导函数说明说明:上面的方上面的方法中把法中把x换换x0即即为求函数在点为求函数在点x0处的处的 导数导数.几种常见函数的导数几种常见函数的导数基本初等函数的导数公基本初等函数的导数公式及导数的运算法则式及导数的运算法则二、几种常见函数的导数二、几种常见函数的导数根据导数的定义可以得出一些常见函数的导数公式根据
2、导数的定义可以得出一些常见函数的导数公式.1.函数函数y=f(x)=c (c为常数为常数)xxfy)(.22)(.3xxfy3)(.4xxfyxxfy1)(.5xxfy)(.61.函数函数 y=f(x)=c 的导数的导数y=cyxO,因0 xccxxfxxfxy.00limlim 00 xxxyy所以y=0表示函数y=x图象上每一点处的切线的斜率都为0.若y=c表示路程关于时间的函数,则y=0则为某物体的瞬时速度始终为0,即一直处于静止状态.从几何的角度理解:从几何的角度理解:从物理的角度理解:从物理的角度理解:2.函数函数 y=f(x)=x 的导数的导数,因为1 xxxxxxfxxfxy.1
3、1limlim 00 xxxyy所以y=xyxOy=1表示函数y=x图象上每一点处的切线斜率都为1.若y=x表示路程关于时间的函数,则y=1可以解释为某物体做瞬时速度为1的匀速运动.从几何的角度理解:从几何的角度理解:从物理的角度理解:从物理的角度理解:探究在同一平面直角坐标系中,画出函数y=2x,y=3x,y=4x的图象,并根据导数定义,求它们的导数.(1)从图象上看,它们的导数分别表示什么?(2)这三个函数中,哪一个增加得最快?哪一个增加得最慢?(3)函数y=kx(k0)增(减)的快慢与什么有关?21-1-2-2-112xyy=xy=2xy=3xy=4x函数函数 y=f(x)=kx 的导数
4、的导数 xxfxxfxy 因为.limlim 00kkxyyxx所以,kxkxxkkxxkxxxk3.函数函数 y=f(x)=x2 的导数的导数 xxxxxxfxxfxy22 因为xxxxxx2222xx 2.22limlim 00 xxxxyyxx所以y=x2yxO y=2x表示函数y=x2图象上点(x,y)处切线的斜率为2x,说明随着x的变化,切线的斜率也在变化.从导数作为函数在一点的瞬时变化率来看,y=2x表明:当x0时,随着x的增加,y=x2增加得越来越快.若y=x2表示路程关于时间的函数,则y=2x可以解释为某物体作变速运动,它在时刻x的瞬时速度为2x.从几何的角度理解:从几何的角度
5、理解:从物理的角度理解:从物理的角度理解:4.函数函数 y=f(x)=的导数的导数x1 xxxxxxfxxfxy11 因为,xxxxxxxxxx21.11limlim 2200 xxxxxyyxx所以探究画出函数 的图象.根据图象,描述它的变化情况,并求出曲线在点(1,1)处的切线方程.xy121-1-2-2-112xy5.函数函数 y=f(x)=的导数的导数x xxxxxxfxxfxy 因为xxxxxxxxxx,xxx1.211limlim 00 xxxxxyyxx所以小结1.若 f(x)=c(c为常数),则f(x)=0;2.若 f(x)=x,则f(x)=1;3.若 f(x)=x2,则f(x
展开阅读全文