高中数学人教A版选修45配套课件:3第三讲《柯西不等式与排序不等式》课件(新人教选修45)[1].ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高中数学人教A版选修45配套课件:3第三讲《柯西不等式与排序不等式》课件(新人教选修45)[1].ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 柯西不等式与排序不等式 高中 学人 选修 45 配套 课件 第三 不等式 排序 新人 下载 _人教A版_数学_高中
- 资源描述:
-
1、一、二维形式的柯西不等式一、二维形式的柯西不等式.,)(1等等号号成成立立时时当当且且仅仅当当则则实实数数都都是是若若二二维维形形式式的的柯柯西西不不等等式式定定理理bcaddcba 222222222222222)()(bd)(ac )(:bdacbcadcbdadbcadcba 证明证明bdacdcba 2222)1(bdacdcba 2222)2(二维形式的柯西不等式的变式二维形式的柯西不等式的变式:22222)()(bdacdcba .,.,)(2等等号号成成立立时时使使或或存存在在实实数数是是零零向向量量当当且且仅仅当当则则是是两两个个向向量量设设柯柯西西不不等等式式的的向向量量形形
2、式式定定理理 kk 2332244)()(,1babababa 证明证明为实数为实数已知已知例例的最大值的最大值求函数求函数例例xxy21015 3 4111,ba,2 baRba求证求证设设例例复习复习:.,),()()()1(22222等等号号成成立立时时当当且且仅仅当当二二维维形形式式的的柯柯西西不不等等式式bcadRdcbabdacdcba .,.(4)等等号号成成立立时时使使或或存存在在实实数数是是零零向向量量当当且且仅仅当当柯柯西西不不等等式式的的向向量量形形式式 kk bdacdcba 2222)2(bdacdcba 2222)3(221221222221212211)()(R,
3、y,x,y,)(3yyxxyxyxx 那那么么设设二二维维形形式式的的三三角角不不等等式式定定理理2212212221212221212222212121212222212121212222222221212121222222121)()(x 22x )(2x 2x 2x )(:yyxyyyyxxxyxyyxxyyxyyxxyyxyxyxyyxyx 证明证明22122122222121)()(yyxxyxyx 22122122222121)()(yyxxyxyx 二二维维形形式式的的三三角角不不等等式式221221221222222212121)()()(zzyyxxzyxzyx 三三维维形形
4、式式的的三三角角不不等等式式22222112222122221)()()(nnnnyxyxyxyyyxxx 一一般般形形式式的的三三角角不不等等式式补充例题补充例题:.1,yb,1的最小值的最小值求求且且已知已知例例yxxaRbayx 2min22222)()(.,)()()(,1,:bayxbayxxayybxbaybxayxyxybxaRbayx 时时取取等等号号即即当当且且仅仅当当解解变式引申变式引申:.,94,13222并并求求最最小小值值点点的的最最小小值值求求若若yxyx )61,41(,2194614113232.32,1312.2194,1)32()11)(94(:222222
5、222最最小小值值点点为为的的最最小小值值为为得得由由时时取取等等号号即即当当且且仅仅当当由由柯柯西西不不等等式式解解yxyxyxyxyxyxyxyxyx 5,5.10,10.102,102.52,52-A.)(,10,.122 DCBbabaRba的的取取值值范范围围是是则则且且若若补充练习补充练习2536.3625.56.65A.)(32,1.222DCByxyx的的最最小小值值是是那那么么已已知知 _1212.3的的最最大大值值为为函函数数 xxy_2,623,.422值是值是的最大的最大则则满足满足设实数设实数yxPyxyx _)1()1(,1.522的最小值是的最小值是则则若若bba
6、aba AB311225小结小结:.,),()()()1(22222等等号号成成立立时时当当且且仅仅当当二二维维形形式式的的柯柯西西不不等等式式bcadRdcbabdacdcba .,.(4)等等号号成成立立时时使使或或存存在在实实数数是是零零向向量量当当且且仅仅当当柯柯西西不不等等式式的的向向量量形形式式 kk bdacdcba 2222)2(bdacdcba 2222)3(22122122222121)()(5)yyxxyxyx 二二维维形形式式的的三三角角不不等等式式221221232232231231)()(x )()()()()6(yyxyyxxyyxx .,:1221等等号号成成立
7、立时时当当且且仅仅当当的的柯柯西西不不等等式式化化简简后后得得二二维维形形式式将将平平面面向向量量的的坐坐标标代代入入能能得得到到从从平平面面向向量量的的几几何何背背景景baba,2221122212221)()()(bababbaa 化化简简后后得得将将空空间间向向量量的的坐坐标标代代入入也也能能得得到到从从空空间间向向量量的的几几何何背背景景类类似似地地,,2332211232221232221)()()(babababbbaaa .)3,2,1(,0,等等号号成成立立时时使使得得或或存存在在一一个个数数即即共共线线时时当当且且仅仅当当,ikbakii 猜想柯西不等式的一般形式猜想柯西不等
展开阅读全文
链接地址:https://www.163wenku.com/p-4288752.html