概率统计第三章题解课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《概率统计第三章题解课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 概率 统计 第三 题解 课件
- 资源描述:
-
1、三、习题解答三、习题解答 1在一箱子中装有在一箱子中装有 12 只开关,其中只开关,其中 2 只是次品,在其只是次品,在其中取两次,每次任取一只,考虑两种试验:中取两次,每次任取一只,考虑两种试验:(1)放回抽样,放回抽样,(2)不放回抽样不放回抽样.我们定义随机变量我们定义随机变量 X、Y 如下:如下:品品,若第一次取得的是次,若第一次取得的是次若第一次取出的是正品若第一次取出的是正品1,0X 品品,若第二次取得的是次,若第二次取得的是次若第二次取出的是正品若第二次取出的是正品1,0Y 是是分分别别就就(1)、(2)两两种种情情况况,写写出出 X 和和 Y 的的联联合合分分布布律律.(1)解
2、解 放回抽样时放回抽样时 PX=0=5/6,PX=1=1/6,PY=0=5/6,PY=1=1/6 PX=i,Y=j=PY=j|X=iPX=i=PX=iPY=j i=0,1 j=0,1 X 和和 Y 的的联联合合分分布布律律为为 X Y 0 1 0 3625 365 1 365 361 (2)解)解 不放回抽样,不放回抽样,PX=0=5/6,PX=1=1/6,PY=0|X=0=119 PY=1|X=0=112 PY=0|X=1=1110 PY=1|X=1=111 且且 PX=i,Y=j=PY=j|X=iPX=i i=0,1 j=0,1 X 和和 Y 的联合分布律为的联合分布律为 XY 0 104
3、5/6610/66110/661/662将一枚硬币抛三次,以将一枚硬币抛三次,以 X 表示在三次中出现正面的表示在三次中出现正面的次数,以次数,以 Y 表示三次中出现正面次数与反面次数之差的绝表示三次中出现正面次数与反面次数之差的绝对值对值.试写出试写出 X 和和 Y 的联合分布律的联合分布律.解解 样本空间样本空间 S=HHH,HHT,HTH,THH,HTT,THT,TTH,TTT 其其中中 H 为为正正面面,T 为为反反面面.X 的的可可能能取取值值为为 0,1,2,3,Y 的的可可能能取取值值为为 1,3.显显然然 PX=0,Y=1=P0 PX=0,Y=3=PTTT=1/8 P(X=1,
4、Y=1)=PHTT,THT,TTH=3/8 P(X=1,Y=3)=P0 PX=2,Y=3=P0 PX=2,Y=1=PHHT,HTH,THH=3/8 PX=3,Y=1=P0 PX=3,Y=3=PHHH=1/8 X 和和 Y 的的联联合合分分布布律律为为 XY 0 1 2 3 1 0 3/8 3/8 03 1/8 0 0 1/83盒子里装有盒子里装有 3 只黑球,只黑球,2 只白球,只白球,2 只红球,在其中只红球,在其中任取任取 4 只球,以只球,以 X 表示取到黑球的只数,以表示取到黑球的只数,以 Y 表示取到红表示取到红球的只数球的只数.求求 X 和和 Y 的联合分布律的联合分布律.解解 X
5、 的可能取值为的可能取值为 0,1,3,Y 的可能取值为的可能取值为 0,1,2,样本点总数为,样本点总数为47C=35 PX=0,Y=0=P0 PX=0,Y=1=P0 PX=0,Y=2=35222203CCC=351 PX=1,Y=0=P0 PX=1,Y=1=35221213CCC=356 PX=2,Y=0=35220223CCC=353 PX=2,Y=1=35121223CCC=3512 PX=2,Y=2=35022223CCC=353 PX=3,Y=0=35120233CCC=352 PX=3,Y=1=35021233CCC=352 PX=3,Y=2=P0 X 与与 Y 的联合分布律为的
6、联合分布律为 X Y 0 1 2 3 0 0 0 3/35 2/35 1 0 6/35 12/35 2/35 2 1/35 6/35 3/35 0 4.设随机变量(设随机变量(X,Y)的概率密度为)的概率密度为 ,其他,其他,042,20),6(),(yxyxkYXf(1)确确定定常常数数;(2)求求X1,Y3;(3)求求 PX1.5;(4)求求 PX+Y4.解(解(1)由由1),(xdydyxf可知可知 2042811)6(kdxdyyxk(2)103283)6(813,1dxdyyxYXP (3)425.103227)6(815.1dxdyyxXP (4)4(4YXPYXP =424032
7、)6(81ydxdyyx 5.设二维随机变量(设二维随机变量(X,Y)的概率密度为)的概率密度为 其它其它,0,),(22222RyxyxRcyxf(1)确定常数确定常数 c;用极坐标用极坐标 302031)(1RcrdrrRcdR 故故33Rc .解解(1)由由 1),(dxdyyxf 解解 R=2 时时,其它其它,04,283),(2222yxyxyxf (2)求求 R=2 时,二维随机变量(时,二维随机变量(X,Y)落在以原点为圆)落在以原点为圆心,心,r=1 为半径的园内的概率为半径的园内的概率.解解由由1,0,YiXPYiXPiXP,1,0 i 1,0,1,0 iiYXPiYXPiY
8、P 6.(1)求求第第 1 题题中随机变量(中随机变量(X,Y)的边缘分布律;)的边缘分布律;(2)求求第第 2 题题中随机变量(中随机变量(X,Y)的边缘分布律)的边缘分布律.可可知知,放放回回与与不不放放回回的的情情况况都都是是 X 0 1 6561 Y 0 1kp6561kp(2)由由 3,1,YiXPYiXPiXP,1,0 i ,30iYkXPiYPk ,3,1 i 可知边缘分布律为可知边缘分布律为 X 0 1 2 3 pk 1/8 3/8 3/8 1/8 Y 1 3 pk 6/8 2/8 7.设设随随机机变变量量(X,Y)的的概概率率密密度度为为 其它其它,00,10),2(8.4)
9、,(xyxxyyxf 求边缘概率密度求边缘概率密度.解解 dyyxfxfX),()(对对其它其它 x,有有 00)(dyxfX dxyxfyfY),()(对其它对其它 y,有,有 00)(dxyfY 8.设二维随机变量(设二维随机变量(X,Y)的概率密度为)的概率密度为 其它其它,00,),(yxeyxfy 求边缘概率密度求边缘概率密度.解解 dyyxfxfX),()(当当0 x时,时,xyxXedyexf )(对其它对其它 x,有,有 0)(,0),(xfyxfX dxyxfyfY),()(当当0 y时时,yyyYyedxeyf 0)(对对其其它它 y,有有 0)(yfY 9设设(X,Y)的
展开阅读全文