《2531 用频率估计概率》课件(共2课时).ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《《2531 用频率估计概率》课件(共2课时).ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2531 用频率估计概率 2531 用频率估计概率课件共2课时 2531 频率 估计 概率 课件 课时
- 资源描述:
-
1、(第第1 1课时课时)2、用列举法求、用列举法求概率有哪几种?概率有哪几种?nmAP(1)(1)实验的所有结果是有限个实验的所有结果是有限个(n)(n)(2)(2)各种结果的可能性相等各种结果的可能性相等.当当实验的所有结果实验的所有结果不是有限个不是有限个,或各种或各种可能结果发生的可能结果发生的可能性不相等可能性不相等时时.又该如又该如何求事件发生的概率呢何求事件发生的概率呢?复习复习1、古典概率条件是什么?用什么方法求?、古典概率条件是什么?用什么方法求?用列举法可以求一些事件的概率用列举法可以求一些事件的概率,我们还我们还可以利用多次重复试验可以利用多次重复试验,通过统计试验结果去通过
2、统计试验结果去估计概率估计概率.我们知道我们知道,任意抛掷一枚质地均匀的硬币时,任意抛掷一枚质地均匀的硬币时,“正面向上正面向上”和和“反面向上反面向上”发生的可能性相发生的可能性相等,这两个随机事件发生的概率都是等,这两个随机事件发生的概率都是0.50.5。这是。这是否意味着抛掷一枚硬币否意味着抛掷一枚硬币100100次时次时,就会有就会有5050次次“正面向上正面向上”和和5050次次“反面向上反面向上”呢呢?不妨用试不妨用试验区进行检验验区进行检验.抛掷次抛掷次数数n n50 100150200250300350400450500“正面向正面向上上”的的频数频数m m“正面向正面向上上”
3、的的频率频率m/nm/n一、试验一、试验:把全班同学分成把全班同学分成1010组,每组同学掷一枚硬币组,每组同学掷一枚硬币5050次次,整理同学们获得试验数据,并记录在表格中。整理同学们获得试验数据,并记录在表格中。第第1 1组的数据填在第组的数据填在第1 1列,第列,第1 1、2 2组的数据之和填在第组的数据之和填在第二列,二列,1010个组的数据之和填在第个组的数据之和填在第1010列。如果在抛列。如果在抛掷掷n n次硬币时,出现次硬币时,出现m m次次“正面向上正面向上”,则随机事件,则随机事件“正面向上正面向上”出现的频率为出现的频率为m/nm/n抛掷次数抛掷次数n n“正面向上正面向
4、上”的频率的频率m/nm/n0.5150100200300400500根据试验所得数据想一想根据试验所得数据想一想:正面向上的频率有什么规律正面向上的频率有什么规律?根据上表中的数据,在下图中标注出对应的点根据上表中的数据,在下图中标注出对应的点抛掷次数(抛掷次数(n)n)20484040120003000024000正面朝上数正面朝上数(m)(m)1061204860191498412012频率频率(m/n)(m/n)0.5180.5060.5010.49960.5005试验试验1:历史上曾有人作过抛掷硬币的大量重复实:历史上曾有人作过抛掷硬币的大量重复实验,结果如下表所示验,结果如下表所示
5、抛掷次数抛掷次数n频率频率m/nm/n0.512048404012000240003000072088实验结论实验结论:当抛硬币的次数很多时当抛硬币的次数很多时,出现下面的频率值是出现下面的频率值是稳定的稳定的,接近于常数接近于常数0.5,0.5,在它附近摆动在它附近摆动.在抛掷一枚硬币时,结果不是在抛掷一枚硬币时,结果不是“正面向上正面向上”就是就是“反面向上反面向上”。因此,从上面提到的。因此,从上面提到的试验中也能得到相应的试验中也能得到相应的“反面向上反面向上”的频的频率。当率。当“正面向上正面向上”的频率稳定于的频率稳定于0.50.5时,时,“反面向上反面向上”的频率呈现什么规律?的
6、频率呈现什么规律?“反面向上”的频率也相应地稳定于0.5试验试验2 2某批乒乓球质量检查结果表某批乒乓球质量检查结果表抽取球数抽取球数n5010020050010002000优等品数优等品数m45921944709541992优等品优等品频率频率m/n 0.90.920.970.94 0.954 0.951试验试验3 3 某种油菜籽在相同条件下的发芽试验结果表某种油菜籽在相同条件下的发芽试验结果表每批粒数每批粒数n251070130310700150020003000发芽的粒数发芽的粒数m24960116282639133918062715发芽的发芽的频率频率m/n10.8 0.9 0.857
7、0.8920.9100.9130.8930.9030.905 当抽查的球数很多时,抽到优等品的频率当抽查的球数很多时,抽到优等品的频率接近于常数接近于常数0.950.95,在它附近摆动。,在它附近摆动。nm 很多很多常数常数 当试验的油菜籽的粒数很多时,油菜籽发芽的频率当试验的油菜籽的粒数很多时,油菜籽发芽的频率 接近接近于常数于常数0.9,在它附近摆动。,在它附近摆动。nm很多很多 常数常数 瑞士数学家雅各布伯瑞士数学家雅各布伯努利(努利(),被公认的概率论的先被公认的概率论的先驱之一,他最早阐明了随驱之一,他最早阐明了随着试验次数的增加,着试验次数的增加,频率频率稳定在概率附近。稳定在概率
8、附近。实际上,从长期实践中,人们观察到,对一般实际上,从长期实践中,人们观察到,对一般的随机事件,在做大量重复试验时,随着试验的随机事件,在做大量重复试验时,随着试验次数的增加,一个事件出现的频率,总在一个次数的增加,一个事件出现的频率,总在一个固定数的附近摆动,显示出一定的稳定性。固定数的附近摆动,显示出一定的稳定性。归纳归纳 一般地一般地,在大量重复试验中在大量重复试验中,如果如果事件事件A A发生的频率发生的频率 稳定于某个常数稳定于某个常数p,p,那么事件那么事件A A发生概率的概率发生概率的概率P(A)=p P(A)=p m mn n 更一般地,即使试验的所有可能结果不更一般地,即使
9、试验的所有可能结果不是有限个,或各种可能结果发生的可能性不是有限个,或各种可能结果发生的可能性不相等我们也可以通过试验的方法去估计一个相等我们也可以通过试验的方法去估计一个随机事件发生的概率。只要试验的次数随机事件发生的概率。只要试验的次数n足足够大,频率够大,频率m/n就作为概率就作为概率p的估计值。的估计值。.某射击运动员在同一条件下练习射击某射击运动员在同一条件下练习射击,结果如结果如下表所示下表所示:(1)(1)计算表中击中靶心的各个频率并填入表中计算表中击中靶心的各个频率并填入表中.(2)(2)这个运动员射击一次这个运动员射击一次,击中靶心的概率约击中靶心的概率约是是_._.补充练习
10、:张小明承包了一片荒山,他想把这片荒山改造成一个补充练习:张小明承包了一片荒山,他想把这片荒山改造成一个苹果果园,现在有两批幼苗可以选择,它们的成活率如下两个表格苹果果园,现在有两批幼苗可以选择,它们的成活率如下两个表格所示:所示:类树苗:类树苗:B B类树苗:类树苗:移植总数移植总数(m m)成活数成活数(m m)成活的频成活的频率率(m/n)(m/n)10850472702354003697506621500133535003203700063351400012628移植总数移植总数(m m)成活数成活数(m m)成活的频率成活的频率(m/n)(m/n)109504927023040036
11、075064115001275350029967000598514000119140.80.940.8700.9230.8830.8900.9150.9050.9020.90.980.850.90.8550.8500.8560.8550.851观察图表,回答问题串、从表中可以发现,类幼树移植成活的、从表中可以发现,类幼树移植成活的频率在频率在_左右摆动,并且随着统计数据左右摆动,并且随着统计数据的增加,这种规律愈加明显,估计类幼树的增加,这种规律愈加明显,估计类幼树移植成活的概率为移植成活的概率为_,估计类幼树移植,估计类幼树移植成活的概率为成活的概率为_、张小明选择类树苗,还是类树苗呢?、张
12、小明选择类树苗,还是类树苗呢?_,_,若他的荒山需要若他的荒山需要1000010000株树苗,则他株树苗,则他实际需要进树苗实际需要进树苗_株?株?3 3、如果每株树苗、如果每株树苗9 9元,则小明买树苗共需元,则小明买树苗共需 _元元0.90.90.90.90.850.85A A类类1111211112100008100008某林业部门要考查某种幼树在一定条件下的移植成活率某林业部门要考查某种幼树在一定条件下的移植成活率,应采用什么具体做法应采用什么具体做法?观察在各次试验中得到的幼树成活的频率,谈谈你的看法观察在各次试验中得到的幼树成活的频率,谈谈你的看法估计移植成活率估计移植成活率移植总
13、数(移植总数(n)成活数(成活数(m)108成活的频率成活的频率0.8()nm50472702350.870400369750662150013350.890350032030.915700063359000807314000126280.9020.940.9230.8830.9050.897是实际问题中的一种概率是实际问题中的一种概率,可理解为成活的概率可理解为成活的概率.估计移植成活率估计移植成活率由下表可以发现,幼树移植成活的频率在左右由下表可以发现,幼树移植成活的频率在左右摆动,并且随着移植棵数越来越大,这种规律愈加明显摆动,并且随着移植棵数越来越大,这种规律愈加明显.所以估计幼树移植
14、成活的概率为所以估计幼树移植成活的概率为0.90.9移植总数(移植总数(n)成活数(成活数(m)108成活的频率成活的频率0.8()nm50472702350.870400369750662150013350.890350032030.915700063359000807314000126280.9020.940.9230.8830.9050.897移植总数(移植总数(n)成活数(成活数(m)108成活的频率成活的频率0.8()nm50472702350.870400369750662150013350.890350032030.915700063359000807314000126280.9
15、020.940.9230.8830.9050.8971.1.林业部门种植了该幼树林业部门种植了该幼树10001000棵棵,估计能成活估计能成活_棵棵.2.2.我们学校需种植这样的树苗我们学校需种植这样的树苗500500棵来绿化校园棵来绿化校园,则至少向林业部门则至少向林业部门购买约购买约_棵棵.900556估计移植成活率估计移植成活率由下表可以发现,幼树移植成活的频率在由下表可以发现,幼树移植成活的频率在0.90.9左右摆动,左右摆动,并且随着移植棵数越来越大,这种规律愈加明显并且随着移植棵数越来越大,这种规律愈加明显.所以估计幼树移植成活的概率为所以估计幼树移植成活的概率为0.90.9共同练
16、习共同练习51.5450044.5745039.2440035.3235030.9330024.2525019.4220015.151500.10510.51000.1105.5050柑橘损坏的频率(柑橘损坏的频率()损坏柑橘质量(损坏柑橘质量(m)/千克千克柑橘总质量(柑橘总质量(n)/千克千克nm完成下表完成下表,0.1010.0970.0970.1030.1010.0980.0990.103某水果公司以某水果公司以2 2元元/千克的成本新进了千克的成本新进了1000010000千克柑橘千克柑橘,如果如果公司希望这些柑橘能够获得利润公司希望这些柑橘能够获得利润50005000元元,那么在出
17、售柑橘那么在出售柑橘(已去已去掉损坏的柑橘掉损坏的柑橘)时时,每千克大约定价为多少元比较合适每千克大约定价为多少元比较合适?为简单起见,我们能否直接把表中的为简单起见,我们能否直接把表中的500500千克柑橘对应的柑橘损坏的频率看作柑千克柑橘对应的柑橘损坏的频率看作柑橘损坏的概率?橘损坏的概率?利用你得到的结论解答下列问题利用你得到的结论解答下列问题:某水果公司以某水果公司以2 2元元/千克的成本新进了千克的成本新进了1000010000千千克柑橘,销售人员首先从所有的柑橘中随机地克柑橘,销售人员首先从所有的柑橘中随机地抽取若干柑橘,进行抽取若干柑橘,进行 了了“柑橘损坏率柑橘损坏率“统计,统
18、计,并把获得的数据记录在下表中并把获得的数据记录在下表中柑橘总质柑橘总质量(量(n n)千克千克损坏柑橘质损坏柑橘质量(量(m m)千)千克克柑橘损坏柑橘损坏的频率的频率(m/n)(m/n)505.5010010.5015015.1520019.4225024.3530030.3235035.3240039.2445044.5750051.540.1100.1050.1010.0970.0970.1010.1010.0980.0990.1031)同桌合作完成表同桌合作完成表25-6.(2)根据表中数据填空根据表中数据填空:这批柑橘损坏的概率这批柑橘损坏的概率_则完好柑橘的概率是则完好柑橘的概率
19、是_,如果某水果公司以如果某水果公司以2元元/千克千克的成本进了的成本进了10000千克柑橘千克柑橘,则这批柑橘中完好柑橘的质则这批柑橘中完好柑橘的质量是量是_,若公司希望这若公司希望这些柑橘能够些柑橘能够获利获利5000元元,那么售价应定为那么售价应定为_元元/千克比较合适千克比较合适.0.10.990002.8在要求精度不是很高的情况下,不妨用表中的最后一行数据中在要求精度不是很高的情况下,不妨用表中的最后一行数据中的频率近似地代替概率的频率近似地代替概率.共同练习共同练习51.5450044.5745039.2440035.3235030.9330024.2525019.4220015.
20、151500.10510.51000.1105.5050柑橘损坏的频率(柑橘损坏的频率()损坏柑橘质量(损坏柑橘质量(m)/千克千克柑橘总质量(柑橘总质量(n)/千克千克nm0.1010.0970.0970.1030.1010.0980.0990.103 为简单起见,我们能否直接把表中的为简单起见,我们能否直接把表中的500500千克柑橘对应的柑橘损坏的频率看作柑千克柑橘对应的柑橘损坏的频率看作柑橘损坏的概率?橘损坏的概率?完成下表完成下表,利用你得到的结论解答下列问题利用你得到的结论解答下列问题:1.1.一水塘里有鲤鱼、鲫鱼、鲢鱼一水塘里有鲤鱼、鲫鱼、鲢鱼共共1 0001 000尾,一渔民通
21、过多次捕获实尾,一渔民通过多次捕获实验后发现:鲤鱼、鲫鱼出现的频率是验后发现:鲤鱼、鲫鱼出现的频率是31%31%和和42%42%,则这个水塘里有鲤鱼,则这个水塘里有鲤鱼_尾尾,鲢鱼鲢鱼_尾尾.310270知识应用知识应用 2 2、如图、如图,长方形内有一不规则区域长方形内有一不规则区域,现在玩投掷游戏现在玩投掷游戏,如果随机掷中长方形的如果随机掷中长方形的300300次中,有次中,有100100次是落在不规则图次是落在不规则图形内形内.【拓展拓展】你能设计一个利用频你能设计一个利用频率估计概率的实验方法估率估计概率的实验方法估算该不规则图形的面积的算该不规则图形的面积的方案吗方案吗?(1)(1
22、)你能估计出掷中不规则图形的概率吗?你能估计出掷中不规则图形的概率吗?(2)(2)若该长方形的面积为若该长方形的面积为150,150,试估计不规则图形的面积试估计不规则图形的面积.3.3.在有一个在有一个1010万人万人的小镇的小镇,随机调查随机调查了了20002000人人,其中有其中有250250人看中央电视人看中央电视台的早间新闻台的早间新闻.在在该镇随便问一个人该镇随便问一个人,他看早间新闻的概他看早间新闻的概率大约是多少率大约是多少?该该镇看中央电视台早镇看中央电视台早间新闻的大约是多间新闻的大约是多少人少人?解解:根据概率的意义根据概率的意义,可以可以认为其概率大约等于认为其概率大约
23、等于250/2000=0.125.250/2000=0.125.该镇约有该镇约有1000001000000.125=125000.125=12500人看中央电视台的早间人看中央电视台的早间新闻新闻.4、从一定的高度落下的图钉,落地从一定的高度落下的图钉,落地后可能图钉尖着地,也可能图钉尖不找后可能图钉尖着地,也可能图钉尖不找地,估计一下哪种事件的概率更大,与地,估计一下哪种事件的概率更大,与同学合作,通过做实验来验证同学合作,通过做实验来验证一下你事先估计是否正确?一下你事先估计是否正确?你能估计图钉尖朝上的你能估计图钉尖朝上的概率吗?概率吗?转动转盘的次数转动转盘的次数n n10010015
24、01502002005005008008001 0001 000落在落在“铅笔铅笔”的次数的次数m m6868111111136136345345546546701701落在落在“铅笔铅笔”的频率的频率mn(2)(2)请估计,当请估计,当n n很大时,频率将会接近多少?很大时,频率将会接近多少?(3)(3)转动该转盘一次,获得铅笔的概率约是多少?转动该转盘一次,获得铅笔的概率约是多少?(4)(4)在该转盘中,标有在该转盘中,标有“铅笔铅笔”区域的扇形的圆心区域的扇形的圆心角大约是多少?角大约是多少?(精确到精确到1 1)5、(1)计算并完成表格:计算并完成表格:0.68 0.68 0.740.
25、74 0.680.68 0.69 0.69 0.6825 0.6825 0.701 0.701 0.69 0.69 0.69360248 6.6.某人把某人把5050粒黄豆染色后与一袋黄豆粒黄豆染色后与一袋黄豆充分混匀,接着抓出充分混匀,接着抓出100100粒黄豆,进行大量粒黄豆,进行大量试验后,被抓出染色黄豆的频率是试验后,被抓出染色黄豆的频率是0.030.03,则这袋黄豆原来有多少粒?则这袋黄豆原来有多少粒?7.对某服装厂的成品西装进行抽查对某服装厂的成品西装进行抽查,结果如下表结果如下表:抽检件数抽检件数100200300400正品正品频数频数97198294392频率频率(1)请完成上
展开阅读全文