专训2-构造全等三角形的五种常用方法课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《专训2-构造全等三角形的五种常用方法课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专训 构造 全等 三角形 常用 方法 课件
- 资源描述:
-
1、阶段方法技巧训练(一)阶段方法技巧训练(一)专训专训2 2 构造全等三角形的五种常用方法构造全等三角形的五种常用方法习题课习题课 在进行几何题的证明或计算时,需要在图形在进行几何题的证明或计算时,需要在图形中添加一些辅助线,辅助线能使题目中的条件比中添加一些辅助线,辅助线能使题目中的条件比较集中,能比较容易找到一些量之间的关系,使较集中,能比较容易找到一些量之间的关系,使数学问题较轻松地解决常见的辅助线作法有:数学问题较轻松地解决常见的辅助线作法有:翻折法翻折法、构造法构造法、旋转法旋转法、倍长中线法和截长倍长中线法和截长(补补短短)法法,目的都是构造全等三角形,目的都是构造全等三角形应应1如
2、图,在如图,在ABC中,中,BE是是ABC的平分线,的平分线,ADBE,垂足为,垂足为D.求证:求证:21C.方法方法1 翻折法翻折法如图,延长如图,延长AD交交BC于点于点F.(相当于将相当于将AB边向下翻折,与边向下翻折,与BC边重合,边重合,A点落点落在在F点处,折痕为点处,折痕为BE)BE平分平分ABC,ABECBE.BDAD,ADBBDF90.证明证明:在在ABD和和FBD中,中,ABDFBD,BDBD,ADBFDB90,ABD FBD(ASA)2DFB.又又DFB1C,21C.应应2如图,在如图,在RtABC中,中,ACB90,AC BC,ABC45,点,点D为为BC的中点,的中点
3、,CEAD于点于点E,其延长线交,其延长线交AB于点于点F,连,连 接接DF.求证:求证:ADCBDF.方法方法2 构造法构造法如图,过点如图,过点B作作BGBC交交CF的延长线的延长线于点于点G.ACB90,2ACF90.CEAD,AEC90,1ACF180AEC1809090.12.证明证明:在在ACD和和CBG中,中,12,ACCB,ACDCBG90,ACD CBG(ASA)ADCG,CDBG.点点D为为BC的中点,的中点,CDBD.BDBG.又又DBG90,DBF45,GBFDBGDBF904545.DBFGBF.在在BDF和和BGF中,中,BDBG,DBFGBF,BFBF,BDF B
展开阅读全文