丘成桐讲演几何魅力及应用课件.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《丘成桐讲演几何魅力及应用课件.pptx》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 丘成桐 讲演 几何 魅力 应用 课件
- 资源描述:
-
1、拓扑和几何的现代发展欧拉(1707-1783)多面体的欧拉公式,组合几何,变分分析,几何与力学,极小曲面。高斯(1777-1855)双曲几何(和罗巴切夫斯基 (1792-1856),波尔约(1802-1829)一起),高斯曲率的内蕴 定义。)高斯(1817)我越来越确信几何的必然性无法被验证,至少现在无法被人类或为了人类而验证。我们或许能在未来领悟到那无法知晓的空间的本质。我们无法把几何和纯粹是先验的算术归为一类。几何和力学却不可分割。黎曼(1826-1866)在抽象定义的空间上引入黎曼度量在无穷小近似下就是欧氏几何。然而只在一阶近似下是等同的。二阶近似由度量的曲率张量来衡量。导致了几何学的革
2、命。克里斯托费尔,列维-齐维塔,比安基,发展了这类抽象空间上的微积分。jiijdxdxg黎 曼 面后来人们意识到对二维空间,每个黎曼度量都可以写成如果引入复数度量可写成)(22dydxFiyxzzdFdz黎 曼 面这样的复坐标在相差一个全纯变换的意义下是唯一的。具有这样复坐标的抽象二维空间称为黎曼面。此概念应用于计算机图形学。高斯曲率黎曼面的高斯曲率为黎曼面给出称为复流形的首个例子。问题:如何重新发现度量?有一个黎曼面,即给出一个复坐标 z。有一个定义在黎曼面上的曲率函数 K。zzFFKlog412高斯曲率 黎曼度量的曲率在高维情形,黎曼度量的曲率远不是一个数量函数,它依赖于空间在某个截面上是
3、如何弯曲的,称为曲率张量。可以对全部曲率张量缩并,得到一个小的张量,称为里奇张量。记为 。里奇张量是一个对称张量,其迹称为数量曲率。记为 。ijRR爱因斯坦方程黎曼几何被爱因斯坦(在格罗斯曼、希尔伯特帮助下)用来描述广义相对论。广义相对论融合了狭义相对论和引力。爱因斯坦方程 这里 是物质张量(引力由度量 的全部的曲率张量来描述)。爱因斯坦方程对几何学家们启发深刻。这是一个高度非线性理论。(是引力位势,是未知量)。ijijijTgRR2ijTijgijg时 空一般地,我们不能期望由爱因斯坦方程定义的时空有很多的对称性。因而,很多经典力学中的守恒量在广义相对论无法直接定义。这里包括质量、动量、角动
4、量等。对于广义相对论中的孤立物理系统,时空在无穷远处基本上是平坦地,因而具渐进对称性。这给出了总质量、总动量和总角动量的定义。正 质 量一个复杂的问题是在某些合理的条件下,证明总质量是正的。这对应着几何中,在某些数量曲率的限制下,研究三维流形的几何。萧恩和丘成桐用经典的变分方法证明了正质量猜想:研究空间中的极小曲面。后来威腾用狄拉克方程和超引力重新证明了正质量猜想。求解爱因斯坦方程广义相对论中困难的问题是如何求解爱因斯坦方程。物质张量为零 的情形。黎曼几何中一个非常有趣的问题:能否找到一个闭空间,没有物质却有引力?当空间具超对称性时,该问题较容易。0ijT求解爱因斯坦方程例如,当空间具复坐标
5、黎曼度量并可写成这种情况下,有一个重要的量有拓扑意义。由陈省身引入,刻画着空间的整体拓扑,称为第一陈类。空间容许真空解要求第一陈类为零。n,z,zz21jiijzddzgzddzgzzij)det(log212卡拉比-丘成桐空间第一陈类为零可以在代数意义下验证。丘成桐证明了第一陈类为零的复曲面上存在具超对称的真空爱因斯坦方程的解。这是卡拉比猜想的一部分。这类空间称为卡拉比-丘成桐空间。椭圆曲线 也是一个卡拉比-丘成桐空间。柏拉图多面体和某些卡拉比-丘成桐空间有着紧密地联系。xnxy232卡拉比-丘成桐空间记 X 为一五次卡拉比-丘成桐空间,其由射影空间中的下述齐次多项式定义:简单地说,X上d
展开阅读全文