高中数学必修四平面向量复习完美课件.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高中数学必修四平面向量复习完美课件.pptx》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 必修 四平 面向 复习 完美 课件 下载 _其他_数学_高中
- 资源描述:
-
1、1、平面向量的实际背景及基本概念、平面向量的实际背景及基本概念2、平面向量的线性运算、平面向量的线性运算3、平面向量的的基本定理及坐标运算、平面向量的的基本定理及坐标运算4、平面向量的数量积、平面向量的数量积复习课复习课年龄,身高,长度,体积,质量重力,浮力,位移,A类B类一、向量的物理背景与概念一、向量的物理背景与概念(1)、向量的物理背景 生活中咱们常常会遇到两种量,一种是只有大小没有方向的量,例如长度、质量等等,这种量叫数量(物理学上称标量);另一种量既有大小又有方向,如速度,力等,这种量叫向量(物理学上称矢量)。(2)、向量的概念 既有大小又有方向的量叫向量二、向量的表示有向线段的长度
2、表示向量的大小,有向线段箭头所指的方向表示向量的方向。在书本上用加粗加黑的字体来表示向量,平时手写体在小写字母上面加一个箭头,或用表示向量的有向线段的起点和终点字母书写。(1)、向量的画法(用有向线段表示向量)(2)、向量的书写三、关于向量的一些概念向量的大小就是向量所对应的有向线段的长度,也叫向量的模,记做向量无法比较大小,但向量的模可以比较大小长度为零的向量称为零向量,记做:零向量的方向任意长度为1个单位长度的向量叫做单位向量(1)、向量的模(大小)(2)、零向量(大小)(3)、单位向量方向相同或相反的向量叫共线向量或平行向量,零向量与任意向量共线(平行)。两向量共线或平行记做:(4)、共
3、线向量(平行向量)(5)、相等向量大小和方向都相同的向量叫相等向量一、向量的加法一、向量的加法一、向量的加法一、向量的加法一、向量的加法二、向量的减法二、向量的减法(1)、相反向量 通过我们上节课的学习知道了向量是有方向的数量有方向的数量,那么相反向量指数量(长度,大小,模)相等而方向相反的两个向量互称为相反向量。二、向量的减法(本质还是加法)三、向量的数乘运算(一个数与一个向量的乘法)三、向量的共线定理一、向量的加法二、向量的减法三、向量的数乘运算(一个数与一个向量的乘法)四、向量共线定理4.4.如图,光滑斜面上一个木块受到的重如图,光滑斜面上一个木块受到的重力为力为G G,下滑力为,下滑力
4、为F F1 1,木块对斜面的压,木块对斜面的压力为力为F F2 2,这三个力的方向分别如何?,这三个力的方向分别如何?三者有何相互关系?三者有何相互关系?G GF F1 1F F2 2四、思考5.5.在物理中,力是一个向量,力的合成在物理中,力是一个向量,力的合成就是向量的加法运算就是向量的加法运算.力也可以分解,力也可以分解,任何一个大小不为零的力,都可以分解任何一个大小不为零的力,都可以分解成两个不同方向的分力之和成两个不同方向的分力之和.将这种力将这种力的分解拓展到向量中来,就会形成一个的分解拓展到向量中来,就会形成一个新的数学理论新的数学理论.四、思考探究(一):探究(一):平面向量基
5、本定理平面向量基本定理 思考思考1 1:给定平面内任意两个向量给定平面内任意两个向量e1 1,e2 2,如何求作向量如何求作向量3 3e1 12 2e2 2和和e1 12 2e2 2?e1 1e2 22 2e2 2B BC CO O3 3e1 1A Ae1 1D D3 3e1 12 2e2 2e1 1-2-2e2 2思考思考2 2:如图,设如图,设OAOA,OBOB,OCOC为三条共为三条共点射线,点射线,P P为为OCOC上一点,能否在上一点,能否在OAOA、OBOB上分别找一点上分别找一点M M、N N,使四边形,使四边形OMPNOMPN为平为平行四边形?行四边形?M MN NO OA A
6、B BC CP P思考思考3 3:在下列两图中,向量在下列两图中,向量不共线,能否在直线不共线,能否在直线OAOA、OBOB上分别找一上分别找一点点M M、N N,使,使?O OA AB BC CM MN NO OA AB BC CM MN N思考思考4 4:在上图中,设在上图中,设 =e1 1,=e2 2,=a,则向量,则向量 分别与分别与e1 1,e2 2的的关系如何?从而向量关系如何?从而向量a与与e1 1,e2 2的关系如的关系如何?何?O OA AB BC CM MN NO OA AB BC CM MN N思考思考5 5:若向量若向量a与与e1 1或或e2 2共线,共线,a还能用还能
7、用1 1e1 12 2e2 2表示吗?表示吗?e1 1aa=1 1e1 1+0+0e2 2e2 2a=0 0e1 1+2 2e2 2思考思考6 6:若上述向量若上述向量e1 1,e2 2,a都为定向量,都为定向量,且且e1 1,e2 2不共线,则实数不共线,则实数1 1,2 2是否存在?是否存在?是否唯一?是否唯一?O OA AB BC CM MN NO OA AB BC CM MN N思考思考7 7:根据上述分析,平面内任一向根据上述分析,平面内任一向量量a都可以由这个平面内两个不共线的都可以由这个平面内两个不共线的向量向量e1 1,e2 2表示出来,从而可形成一个表示出来,从而可形成一个定
8、理定理.你能完整地描述这个定理的内容你能完整地描述这个定理的内容吗?吗?若若e1 1、e2 2是同一平面内的两个不共线向量,是同一平面内的两个不共线向量,则对于这一平面内的任意向量则对于这一平面内的任意向量a,有且只有,有且只有一对实数一对实数1 1,2 2,使,使a1e12e2.思考思考8 8:上述定理称为上述定理称为平面向量基本定理平面向量基本定理,不共线向量不共线向量e1,e2叫做表示这一平面内所叫做表示这一平面内所有向量的一组有向量的一组基底基底.那么同一平面内可那么同一平面内可以作基底的向量有多少组?不同基底对以作基底的向量有多少组?不同基底对应向量应向量a的表示式是否相同?的表示式
9、是否相同?若若e1 1、e2 2是同一平面内的两个不共线向量,是同一平面内的两个不共线向量,则对于这一平面内的任意向量则对于这一平面内的任意向量a,有且只有,有且只有一对实数一对实数1 1,2 2,使,使a1e12e2.探究探究(二二):):平面向量的正交分解及坐标表示平面向量的正交分解及坐标表示 00,180180 思考思考1 1:不共线的向量有不同的方向,对不共线的向量有不同的方向,对于两个非零向量于两个非零向量a和和b,作,作 a,b,如图如图.为了反映这两个向量的位置关系,为了反映这两个向量的位置关系,称称AOBAOB为向量为向量a与与b的的夹角夹角.你认为向量你认为向量的夹角的取值范
展开阅读全文