第8章-多重比较方差检验-分解课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《第8章-多重比较方差检验-分解课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 多重 比较 方差 检验 分解 课件
- 资源描述:
-
1、8.2.1 效应差的置信区间 如果方差分析的结果因子A显著,则等于说有充分理由认为因子A各水平的效应不全相同,但这并不是说它们中一定没有相同的。就指定的一对水平Ai与Aj,我们可通过求i-j的区间估计来进行比较。由于 ,故由此给出i-j的置信水平为1-的置信区间为 (8.2.1)其中 是 2的无偏估计。这里的置信区间与第六章中的两样本的t区间基本一致,区别在于这里 2的估计使用了全部样本而不仅仅是两个水平Ai,Aj下的观测值。2.11(,()ijijijyyNmm.()()()11()ijijeeijeyytfSmmf.11221111()(),()()ijeijeijijyytfyytfmm
2、mm2/eeSf例8.2.1 继续例8.1.2,fe=21,取0.05,则t1-/2(fe)=t0.975(21)=2.0796,于是可算出各个置信区间为 可见第一个区间在0的左边,所以我们可以概率95%断言认为1 小于2,其它二个区间包含0点,虽然从点估计角度看水平均值估计有差别,但这种差异在0.05水平上是不显著的。0.9751 1(21)38.11438 8t121323:48.875038.1143 86.9893,10.7607:2038.1143 58.11433,18.1143:28.875038.1143 9.2393,66.9893 1343.6171 36.65548.2.
3、2 多重比较问题 对每一组(i,j),(8.2.1)给出的区间的置信水平都是1,但对多个这样的区间,要求其同时成立,其联合置信水平就不再是1 了。譬如,设E1,Ek是k个随机事件,且有 P(Ei)=1,i=1,k,则其同时发生的概率 这说明它们同时发生的概率可能比1 小很多。为了使它们同时发生的概率不低于1,一个办法是把每个事件发生的概率提高到1/k.这将导致每个置信区间过长,联合置信区间的精度很差,一般人们不采用这种方法。111()1()1()1kkkiiiiiiPEPEP Ek 在方差分析中,如果经过F检验拒绝原假设,表明因子A是显著的,即r个水平对应的水平均值不全相等,此时,我们还需要进
4、一步确认哪些水平均值间是确有差异的,哪些水平均值间无显著差异。同时比较任意两个水平均值间有无明显差异的问题称为多重比较,多重比较即要以显著性水平同时检验如下r(r1)/2个假设:(8.2.2)0:,1,ijijHijr 直观地看,当H0ij成立时,不应过大,因此,关于假设(8.2.2)的拒绝域应有如下形式 诸临界值应在(8.2.2)成立时由P(W)=确定。下面分重复数相等和不等分别介绍临界值的确定。.1|ijijij rWyyc .|ijyy 8.2.3 重复数相等场合的T法 在重复数相等时,由对称性自然可以要求诸cij相等,记为c.记 ,则由给定条件不难有 2/eeSf.()/iiieytt
5、 fm 于是当(8.2.2)成立时,1=r=,可推出 其中 ,称为t化极差统计量,其分布可由随机模拟方法得到。于是 ,其中q1(r,fe)表示q(r,fe)的1 分位数,其值在附表8中给出。()(,)/eP WP q r fmc.()()(,)maxmin/jieijyyq r fmm1(,)/ecqr fm 重复数相同时多重比较可总结如下:对给定的的显著性水平,查多重比较的分位数q(r,fe)表,计算 ,比较诸 与c的大小,若 则认为水平Ai与水平Aj间有显著差异,反之,则认为水平Ai与水平Aj间无明显差别。这一方法最早由Turkey提出,因此称为T法。1(,)/ecqr fm.|ijyy.
6、|ijyyc 例8.2.2 继续例8.1.2,若取=0.05,则查表知q1-0.05(3,21)=3.57,而 。所以 ,认为1与2有显著差别 ,认为1与3无显著差别 ,认为2与3有显著差别 这说明:1与3之间无显著差别,而它们与2之间都有显著差异。36.65543.57 36.6554/846.2659c 1.3.|2046.2659yy2.3.|46.87546.2659yy1.2.|48.87546.2659yy在重复数不等时,若假设(8.2.2)成立,则 或 从而可以要求 ,在此要求下可推出.()()11ijijeijyytt fmm2.2()(1,)11()ijijeijyyFFfm
展开阅读全文