书签 分享 收藏 举报 版权申诉 / 181
上传文档赚钱

类型平稳非白噪声序列计算样本相关系数模型识别参数估计模型检验模型课件.ppt

  • 上传人(卖家):晟晟文业
  • 文档编号:4258570
  • 上传时间:2022-11-23
  • 格式:PPT
  • 页数:181
  • 大小:1.30MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《平稳非白噪声序列计算样本相关系数模型识别参数估计模型检验模型课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    平稳 噪声 序列 计算 样本 相关系数 模型 识别 参数估计 检验 课件
    资源描述:

    1、本章结构nARMA模型 n平稳序列建模n序列预测 3.1 ARMA模型的性质 nAR模型(Auto Regression Model)nMA模型(Moving Average Model)nARMA模型(Auto Regression Moving Average model)AR模型的定义n具有如下结构的模型称为 阶自回归模型,简记为n特别当 时,称为中心化 模型tsExtsEVarExxxxtsstttptptpttt,0,0)(,)(0)(0222110,p)(pAR00)(pAR AR(P)序列中心化变换n称 为 的中心化序列,令p101ttxytytx自回归系数多项式n引进延迟算子,

    2、中心化 模型又可以简记为 n自回归系数多项式)(pARttxB)(ppBBBB2211)(AR模型平稳性判别 n判别原因nAR模型是常用的平稳序列的拟合模型之一,但并非所有的AR模型都是平稳的 n判别方法n单位根判别法n平稳域判别法例3.1:考察如下四个模型的平稳性1(1)0.8tttxx1(2)1.1tttxx 12(3)0.5ttttxxxttttxxx115.0)4(ne-rnorm(1000)nx1=e;x2=e;x3=e;x4=enfor(i in 3:1000)nx1i=0.8*x1i-1+einx2i=-1.1*x2i-1+einx3i=x3i-1-0.5*x3i-2+einx4

    3、i=x4i-1+0.5*x4i-2+einnpar(mfrow=c(2,2)nts.plot(x1)nts.plot(x2)nts.plot(x3)nts.plot(x4)例3.1平稳序列时序图1(1)0.8tttxx12(3)0.5ttttxxx例3.1非平稳序列时序图1(2)1.1tttxx ttttxxx115.0)4(AR模型平稳性判别方法n特征根判别nAR(p)模型平稳的充要条件是它的p个特征根都在单位圆内n根据特征根和自回归系数多项式的根成倒数的性质,等价判别条件是该模型的自回归系数多项式的根都在单位圆外n平稳域判别 n平稳域,21单位根都在单位圆内pAR(1)模型平稳条件n特征根

    4、n平稳域1AR(2)模型平稳条件n特征根n平稳域2424221122211111,12221,且例3.1平稳性判别8.010.81.111.1 211i212i221210.5,0.5,1.5 23112312221210.5,1.5,0.5 模型特征根判别平稳域判别结论(1)平稳(2)非平稳(3)平稳(4)非平稳平稳AR模型的统计性质n均值n方差n协方差n自相关系数n偏自相关系数均值 n如果AR(p)模型满足平稳性条件,则有n根据平稳序列均值为常数,且 为白噪声序列,有n推导出p101)(110tptpttxxEExTtEExtt,0)(,tGreen函数定义nAR模型的传递形式n其中系数

    5、称为Green函数,2,1,jGjjtjjjpijtjiipijtjiipitiittGkBkBkBx001101)(1)(Green函数递推公式n原理n方法n待定系数法n递推公式pkpkjGGGkkkjjkkj,0,2,1110其中,ttttttBGBBGxxB)()()()(方差n平稳AR模型的传递形式n两边求方差得函数为GreenGGxVarjjjt,)(202jtjjtGx0例3.2:求平稳AR(1)模型的方差n平稳AR(1)模型的传递形式为nGreen函数为n平稳AR(1)模型的方差itiitiittBBx01011)(1,1,0,1jGjj2122021021)()(jjtjjtV

    6、arGxVar协方差函数n在平稳AR(p)模型两边同乘 ,再求期望n根据n得协方差函数的递推公式)()()()(11kttktptpkttkttxExxExxExxEktx1,k0)(kttxE1,kpkpkkk2211例3.3:求平稳AR(1)模型的协方差n递推公式n平稳AR(1)模型的方差为n协方差函数的递推公式为0111kkk212011,12121kkk例3.4:求平稳AR(2)模型的协方差n平稳AR(2)模型的协方差函数递推公式为21)1)(1)(1(12211201122121220kkkk,自相关系数n自相关系数的定义n平稳AR(P)模型的自相关系数递推公式0kk1122kkkp

    7、kp 常用AR模型自相关系数递推公式nAR(1)模型nAR(2)模型0,1kkk2110,1221121kkkkkkAR模型自相关系数的性质n拖尾性n呈复指数衰减1()pkiiikc不能恒等于零pccc,211()pkiiikc0npar(mfrow=c(2,2)nacf(x1)nacf(x2)nacf(x3)nacf(x4)例3.5n自相关系数按复指数单调收敛到零1(1)0.8tttxx例3.5:1(2)0.8tttxx 例3.5:考察如下AR模型的自相关图ttttttttttttttxxxxxxxxxx2121115.0)4(5.0)3(8.0)2(8.0)1(例3.5:n自相关系数呈现出

    8、“伪周期”性12(3)0.5ttttxxx例3.5:n自相关系数不规则衰减12(4)0.5ttttxxx 偏自相关系数n定义对于平稳AR(p)序列,所谓滞后k偏自相关系数就是指在给定中间k-1个随机变量 的条件下,或者说,在剔除了中间k-1个随机变量的干扰之后,对 影响的相关度量。用数学语言描述就是121,ktttxxxktxtx2,)()(11ktktktktttxxxxxExExExxExEkttktt偏自相关系数的计算n滞后k偏自相关系数实际上就等于k阶自回归模型第k个回归系数的值。02211202112112011kkkkkkkkkkkkkkkkk)()(2ktktktktttkkxE

    9、xExExxExE偏自相关系数的截尾性nAR(p)模型偏自相关系数P阶截尾pkkk,0npar(mfrow=c(2,2)npacf(x1)npacf(x2)npacf(x3)npacf(x4)例3.5续:考察如下AR模型的偏自相关图ttttttttttttttxxxxxxxxxx2121115.0)4(5.0)3(8.0)2(8.0)1(例3.5n理论偏自相关系数n样本偏自相关图1(1)0.8tttxx0.8,10,2kkkk例3.5:n理论偏自相关系数n样本偏自相关图1(2)0.8tttxx 0.8,10,2kkkk例3.5:n理论偏自相关系数n样本偏自相关图12(3)0.5ttttxxx2

    10、,130.5,20,3kkkkk 例3.5:n理论偏自相关系数n样本偏自相关系数图12(4)0.5ttttxxx 2,130.5,20,3kkkkk MA模型的定义n具有如下结构的模型称为 阶自回归模型,简记为n特别当 时,称为中心化 模型q)(qMA0)(qMA112220()0(),()0,ttttqt qqtttsxEVarEst ,移动平均系数多项式n引进延迟算子,中心化 模型又可以简记为 n 阶移动平均系数多项式)(qMAttBx)(qqqBBBB2211)(MA模型的统计性质n常数均值n常数方差)(qtqttttEEx221122212211)1()()(qqtqttttVarxV

    11、arMA模型的统计性质n自协方差函数P阶截尾n自相关系数P阶截尾q kqkkkqiikikqk ,01 ,)(0 ,)1(212221qkqkkqkqiikikk ,01 ,10 ,12211常用MA模型的自相关系数nMA(1)模型nMA(2)模型2,01,10,1211kkkk3,02,11,10,1222122221211kkkkkMA模型的统计性质n偏自相关系数拖尾)(11111qktqktqtqtkk零不会在有限阶之后恒为不恒为零kkq,1例3.6:考察如下MA模型的相关性质212111162545)4(251654)3(5.0)2(2)1(ttttttttttttttxxxxne-r

    12、norm(1000)nx1=e;x2=e;x3=e;x4=enfor(i in 3:1000)nx1i=ei-2*ei-1nx2i=ei-0.5*ei-1nx3i=ei-4/5*ei-1+16/25*ei-2nx4i=ei-5/4*ei-1+25/16*ei-2nnpar(mfrow=c(2,2)nts.plot(x1)nts.plot(x2)nts.plot(x3)nts.plot(x4)npar(mfrow=c(2,2)nacf(x1)nacf(x2)nacf(x3)nacf(x4)npar(mfrow=c(2,2)npacf(x1)npacf(x2)npacf(x3)npacf(x4)M

    13、A模型的自相关系数截尾n n 112tttx()120.5tttx()MA模型的自相关系数截尾n n 124163525ttttx()125254416ttttx()MA模型的偏自相关系数拖尾n n 112tttx()120.5tttx()MA模型的偏自相关系数拖尾n n 124163525ttttx()125254416ttttx()MA模型的可逆性nMA模型自相关系数的不唯一性n例3.6中不同的MA模型具有完全相同的自相关系数和偏自相关系数212111162545)4(251654)3(5.0)2(2)1(ttttttttttttttxxxx可逆的定义n可逆MA模型定义n若一个MA模型能够

    14、表示称为收敛的AR模型形式,那么该MA模型称为可逆MA模型n可逆概念的重要性n一个自相关系数列唯一对应一个可逆MA模型。可逆MA(1)模型n n 1tttx11tttx21ttBx1ttBx11可逆,1可逆,1MA模型的可逆条件nMA(q)模型的可逆条件是:nMA(q)模型的特征根都在单位圆内n等价条件是移动平滑系数多项式的根都在单位圆外11i1i逆函数的递推公式n原理n方法n待定系数法n递推公式qkqkjIIIkkkjjkkj,0,2,1110其中,ttttttxxBIBxBIBx)()()()(例3.6续:考察如下MA模型的可逆性212111162545)4(251654)3(5.0)2(

    15、2)1(ttttttttttttttxxxx(1)(2)n n n逆函数n逆转形式不可逆1221tttx可逆15.05.01tttx05.0kktktx1,5.01kIkk(3)(4)n n n逆函数n逆转形式可逆1,125165412221ttttx,1,0,23,0133,)1(1nnknnkIknk或013130338.0)1(8.0)1(nntnnnntnntxx不可逆11625162545221ttttxARMA模型的定义n具有如下结构的模型称为自回归移动平均模型,简记为n特别当 时,称为中心化 模型),(qpARMAtsExtsEVarExxxtsstttqpqtqttptptt,

    16、0,0)(,)(0)(00211110,00),(qpARMA系数多项式n引进延迟算子,中心化 模型又可以简记为 n 阶自回归系数多项式n 阶移动平均系数多项式),(qpARMAttBxB)()(qqqBBBB2211)(pppBBBB2211)(平稳条件与可逆条件nARMA(p,q)模型的平稳条件nP阶自回归系数多项式 的根都在单位圆外n即ARMA(p,q)模型的平稳性完全由其自回归部分的平稳性决定nARMA(p,q)模型的可逆条件nq阶移动平均系数多项式 的根都在单位圆外n即ARMA(p,q)模型的可逆性完全由其移动平滑部分的可逆性决定0)(B0)(B传递形式与逆转形式n传递形式n逆转形式

    17、11)()(jjtjtttGBBx1,110kGGGkjjjkjk11)()(jjtjtttxIxxBB1,110kIIIkjjjkjkARMA(p,q)模型的统计性质n均值n协方差n自相关系数ptEx101 )(02ikiiGGk020)0()()(jjjkjjGGGkkARMA模型的相关性n自相关系数拖尾n偏自相关系数拖尾例3.7:考察ARMA模型的相关性n拟合模型ARMA(1,1):并直观地考察该模型自相关系数和偏自相关系数的性质。10.50.8ttttxxne-rnorm(1000)nx5=enfor(i in 3:1000)nx5i=0.5*x5i-1+ei-0.8*ei-1npar

    18、(mfrow=c(2,2)nts.plot(x5)nacf(x5);pacf(x5)自相关系数和偏自相关系数拖尾性n样本自相关图n样本偏自相关图ARMA模型相关性特征3.3平稳序列建模 n建模步骤n模型识别n参数估计n模型检验n模型优化n序列预测建模步骤平平稳稳非非白白噪噪声声序序列列计计算算样样本本相相关关系系数数模型模型识别识别参数参数估计估计模型模型检验检验模模型型优优化化序序列列预预测测YN计算样本相关系数n样本自相关系数n样本偏自相关系数nttkntkttkxxxxxx121)()(DDkkk模型识别n基本原则kkk模型定阶的困难n因为由于样本的随机性,样本的相关系数不会呈现出理论截

    19、尾的完美情况,本应截尾的 或 仍会呈现出小值振荡的情况n由于平稳时间序列通常都具有短期相关性,随着延迟阶数 ,与 都会衰减至零值附近作小值波动?当 或 在延迟若干阶之后衰减为小值波动时,什么情况下该看作为相关系数截尾,什么情况下该看作为相关系数在延迟若干阶之后正常衰减到零值附近作拖尾波动呢?kkkkkkkkkk样本相关系数的近似分布nBarlettnQuenouillennNk,)1,0(nnNkk,)1,0(模型定阶经验方法n95的置信区间n模型定阶的经验方法n如果样本(偏)自相关系数在最初的d阶明显大于两倍标准差范围,而后几乎95的自相关系数都落在2倍标准差的范围以内,而且通常由非零自相关

    20、系数衰减为小值波动的过程非常突然。这时,通常视为(偏)自相关系数截尾。截尾阶数为d。22Pr0.9522Pr0.95kkknnnn例2.5续n选择合适的模型ARMA拟合1950年1998年北京市城乡居民定期储蓄比例序列。n x-scan()n83.5n63.1n71n76.3n70.5n80.5n73.6n75.2n69.1n71.4n73.6n78.8n84.4n84.1n83.3n83.1n81.6n81.4n84n82.9n83.5n83.2n82.2n83.2n83.5n83.8n84.5n84.8n83.9n83.9n81n82.2n82.7n82.3n80.9n80.3n81.3n

    21、81.6n83.4n88.2n89.6n90.1n88.2n87n87n88.3n87.8n84.7n80.2npar(mfrow=c(3,1)nts.plot(x)nacf(x)npacf(x)序列自相关图序列偏自相关图拟合模型识别n自相关图显示延迟3阶之后,自相关系数全部衰减到2倍标准差范围内波动,这表明序列明显地短期相关。但序列由显著非零的相关系数衰减为小值波动的过程相当连续,相当缓慢,该自相关系数可视为不截尾 n偏自相关图显示除了延迟1阶的偏自相关系数显著大于2倍标准差之外,其它的偏自相关系数都在2倍标准差范围内作小值随机波动,而且由非零相关系数衰减为小值波动的过程非常突然,所以该偏自

    22、相关系数可视为一阶截尾 n所以可以考虑拟合模型为AR(1)例3.8美国科罗拉多州某一加油站连续57天的OVERSHORT序列 nx-scan()n78n-58n53n-63n13n-6n-16n-14n3n-74n89n-48n-14n32n56n-86n-66n50n26n59n-47n-83n2n-1n124n-106n113n-76n-47n-32n39n-30n6n-73n18n2n-24n23n-38n91n-56n-58n1n14n-4n77n-127n97n10n-28n-17n23n-2n48n-131n65n-17npar(mfrow=c(3,1)nts.plot(x)nac

    23、f(x)npacf(x)序列自相关图序列偏自相关图拟合模型识别n自相关图显示除了延迟1阶的自相关系数在2倍标准差范围之外,其它阶数的自相关系数都在2倍标准差范围内波动。根据这个特点可以判断该序列具有短期相关性,进一步确定序列平稳。同时,可以认为该序列自相关系数1阶截尾n偏自相关系数显示出典型非截尾的性质。n综合该序列自相关系数和偏自相关系数的性质,为拟合模型定阶为MA(1)例3.9n1880-1985全球气表平均温度改变值差分序列 nx-scan()n-0.4n-0.37n-0.43n-0.47n-0.72n-0.54n-0.47n-0.54n-0.39n-0.19n-0.4n-0.44n-0

    24、.44n-0.49n-0.38n-0.41n-0.27n-0.18n-0.38n-0.22n-0.03n-0.09n-0.28n-0.36n-0.49n-0.25n-0.17n-0.45n-0.32n-0.33n-0.32n-0.29n-0.32n-0.25n-0.05n-0.01n-0.26n-0.48n-0.37n-0.2n-0.15n-0.08n-0.14n-0.13n-0.12n-0.1n0.13n-0.01n0.06n-0.17n-0.01n0.09n0.05n-0.16n0.05n-0.02n0.04n0.17n0.19n0.05n0.15n0.13n0.09n0.04n0.11n

    25、-0.03n0.03n0.15n0.04n-0.02n-0.13n0.02n0.07n0.2n-0.03n-0.07n-0.19n0.09n0.11n0.06n0.01n0.08n0.02n0.02n-0.27n-0.18n-0.09n-0.02n-0.13n0.02n0.03n-0.12n-0.08n0.17n-0.09n-0.04n-0.24n-0.16n-0.09n0.12n0.27n0.42n0.02n0.3n0.09n0.05nx-diff(x)npar(mfrow=c(3,1)nts.plot(x)nacf(x)npacf(x)序列自相关图序列偏自相关图拟合模型识别n自相关系数显示

    26、出不截尾的性质n偏自相关系数也显示出不截尾的性质n综合该序列自相关系数和偏自相关系数的性质,可以尝试使用ARMA(1,1)模型拟合该序列参数估计n待估参数n 个未知参数n常用估计方法n矩估计n极大似然估计n最小二乘估计2pq211,pq 矩估计n原理n样本自相关系数估计总体自相关系数n样本一阶均值估计总体均值,样本方差估计总体方差111111(,)(,)pqp qpqp q 1niixxn2221221211xqp例3.10:求AR(2)模型系数的矩估计nAR(2)模型nYule-Walker方程n矩估计(Yule-Walker方程的解)ttttxxx221121121211121211121

    27、21221例3.11:求MA(1)模型系数的矩估计nMA(1)模型n方程n矩估计11tttx2201111220111(1)1 12112411例3.12:求ARMA(1,1)模型系数的矩估计nARMA(1,1)模型n方程n矩估计1111ttttxx1111 112011 1211()(1)12 1122122112121,2,242,24,ccccccc对矩估计的评价n优点n估计思想简单直观n不需要假设总体分布n计算量小(低阶模型场合)n缺点n信息浪费严重n只用到了p+q个样本自相关系数信息,其他信息都被忽略n估计精度差n通常矩估计方法被用作极大似然估计和最小二乘估计迭代计算的初始值 极大似

    28、然估计n原理n在极大似然准则下,认为样本来自使该样本出现概率最大的总体。因此未知参数的极大似然估计就是使得似然函数(即联合密度函数)达到最大的参数值,);(max),;,(21121kkxpxxL似然方程n由于 和 都不是 的显式表达式。因而似然方程组实际上是由p+q+1个超越方程构成,通常需要经过复杂的迭代算法才能求出未知参数的极大似然估计值 ()Sln 0)(21ln21);(02)(2);(2422SxlSnxl对极大似然估计的评价n优点n极大似然估计充分应用了每一个观察值所提供的信息,因而它的估计精度高n同时还具有估计的一致性、渐近正态性和渐近有效性等许多优良的统计性质n缺点n需要假定

    29、总体分布最小二乘估计n原理n使残差平方和达到最小的那组参数值即为最小二乘估计值 211111)(min)(min)(ntqtqtptpttxxxQQ条件最小二乘估计n实际中最常用的参数估计方法n假设条件n残差平方和方程n解法n迭代法0,0txtnitititnitxxQ121112)(对最小二乘估计的评价n优点n最小二乘估计充分应用了每一个观察值所提供的信息,因而它的估计精度高n条件最小二乘估计方法使用率最高n缺点n需要假定总体分布narima(x,order=c(0,0,0),seasonal=list(order=c(0,0,0),period=NA),xreg=NULL,include.

    30、mean=TRUE,transform.pars=TRUE,fixed=NULL,init=NULL,method=c(CSS-ML,ML,CSS),n.cond,optim.method=BFGS,optim.control=list(),kappa=1e6)例2.5续n确定1950年1998年北京市城乡居民定期储蓄比例序列拟合模型的口径 n拟合模型:AR(1)n估计方法:极大似然估计n模型口径tttxx169.017.2517.16)(2Varn x1-scan()n83.5n63.1n71n76.3n70.5n80.5n73.6n75.2n69.1n71.4n73.6n78.8n84.4

    31、n84.1n83.3n83.1n81.6n81.4n84n82.9n83.5n83.2n82.2n83.2n83.5n83.8n84.5n84.8n83.9n83.9n81n82.2n82.7n82.3n80.9n80.3n81.3n81.6n83.4n88.2n89.6n90.1n88.2n87n87n88.3n87.8n84.7n80.2narima(x1,order=c(1,0,0),method=ML)例3.8续n确定美国科罗拉多州某一加油站连续57天的OVERSHORTS序列拟合模型的口径 n拟合模型:MA(1)n估计方法:条件最小二乘估计n模型口径ttBx)82303.01(403

    32、51.4929.2178)(2Varnx2-scan()n78n-58n53n-63n13n-6n-16n-14n3n-74n89n-48n-14n32n56n-86n-66n50n26n59n-47n-83n2n-1n124n-106n113n-76n-47n-32n39n-30n6n-73n18n2n-24n23n-38n91n-56n-58n1n14n-4n77n-127n97n10n-28n-17n23n-2n48n-131n65n-17narima(x2,order=c(0,0,1)例3.9续n确定1880-1985全球气表平均温度改变值差分序列拟合模型的口径 n拟合模型:ARMA(

    33、1,1)n估计方法:条件最小二乘估计n模型口径119.0407.0003.0ttttxx016.0)(2Varnx3-scan()n-0.4n-0.37n-0.43n-0.47n-0.72n-0.54n-0.47n-0.54n-0.39n-0.19n-0.4n-0.44n-0.44n-0.49n-0.38n-0.41n-0.27n-0.18n-0.38n-0.22n-0.03n-0.09n-0.28n-0.36n-0.49n-0.25n-0.17n-0.45n-0.32n-0.33n-0.32n-0.29n-0.32n-0.25n-0.05n-0.01n-0.26n-0.48n-0.37n-0

    34、.2n-0.15n-0.08n-0.14n-0.13n-0.12n-0.1n0.13n-0.01n0.06n-0.17n-0.01n0.09n0.05n-0.16n0.05n-0.02n0.04n0.17n0.19n0.05n0.15n0.13n0.09n0.04n0.11n-0.03n0.03n0.15n0.04n-0.02n-0.13n0.02n0.07n0.2n-0.03n-0.07n-0.19n0.09n0.11n0.06n0.01n0.08n0.02n0.02n-0.27n-0.18n-0.09n-0.02n-0.13n0.02n0.03n-0.12n-0.08n0.17n-0.09

    35、n-0.04n-0.24n-0.16n-0.09n0.12n0.27n0.42n0.02n0.3n0.09n0.05n arima(x3,order=c(1,1,1)n x4=diff(x3)narima(x4,order=c(1,0,1)模型检验n模型的显著性检验n整个模型对信息的提取是否充分n参数的显著性检验n模型结构是否最简模型的显著性检验n目的n检验模型的有效性(对信息的提取是否充分)n检验对象n残差序列n判定原则n一个好的拟合模型应该能够提取观察值序列中几乎所有的样本相关信息,即残差序列应该为白噪声序列 n反之,如果残差序列为非白噪声序列,那就意味着残差序列中还残留着相关信息未被提取

    36、,这就说明拟合模型不够有效假设条件n原假设:残差序列为白噪声序列n备择假设:残差序列为非白噪声序列0120,1mHm:mkmHk,:至少存在某个1,01检验统计量(ljung-box test)nLB统计量 R(Box.test)nBox.test(x,lag=1,type=Ljung)221(2)()()mkkLBn nmnk例2.5续n检验1950年1998年北京市城乡居民定期储蓄比例序列拟合模型的显著性 n残差白噪声序列检验结果nx1-scan()n83.5n63.1n71n76.3n70.5n80.5n73.6n75.2n69.1n71.4n73.6n78.8n84.4n84.1n83

    37、.3n83.1n81.6n81.4n84n82.9n83.5n83.2n82.2n83.2n83.5n83.8n84.5n84.8n83.9n83.9n81n82.2n82.7n82.3n80.9n80.3n81.3n81.6n83.4n88.2n89.6n90.1n88.2n87n87n88.3n87.8n84.7n80.2n xr1=resid(arima(x1,order=c(1,0,0)n Box.test(xr1,lag=1,type=Ljung)n Box.test(xr1,lag=6,type=Ljung)n Box.test(xr1,lag=12,type=Ljung)n Bo

    38、x.test(xr1,lag=18,type=Ljung)参数显著性检验n目的n检验每一个未知参数是否显著非零。删除不显著参数使模型结构最精简 n假设条件n检验统计量mjHHjj10:0:10)()(mntQamnTjjjj例2.5续n检验1950年1998年北京市城乡居民定期储蓄比例序列极大似然估计模型的参数是否显著 n参数检验结果1n mar=arima(x1,order=c(1,0,0)nabs(mar$coef)/sqrt(diag(mar$var.coef)n 1-pnorm(abs(mar$coef)/sqrt(diag(mar$var.coef)例3.8续:对OVERSHORTS

    39、序列的拟合模型进行检验 n残差白噪声检验n参数显著性检验1nx2-scan()n78n-58n53n-63n13n-6n-16n-14n3n-74n89n-48n-14n32n56n-86n-66n50n26n59n-47n-83n2n-1n124n-106n113n-76n-47n-32n39n-30n6n-73n18n2n-24n23n-38n91n-56n-58n1n14n-4n77n-127n97n10n-28n-17n23n-2n48n-131n65n-17nmar2=arima(x2,order=c(0,0,1)nxr2=resid(mar2)nBox.test(xr2,lag=6

    40、,type=Ljung)nBox.test(xr2,lag=12,type=Ljung)n1-pnorm(abs(mar2$coef)/sqrt(diag(mar2$var.coef)nabs(mar2$coef)/sqrt(diag(mar2$var.coef)例3.9续:对1880-1985全球气表平均温度改变值差分序列拟合模型进行检验 n残差白噪声检验n参数显著性检验11nx3-scan()n-0.4n-0.37n-0.43n-0.47n-0.72n-0.54n-0.47n-0.54n-0.39n-0.19n-0.4n-0.44n-0.44n-0.49n-0.38n-0.41n-0.27

    41、n-0.18n-0.38n-0.22n-0.03n-0.09n-0.28n-0.36n-0.49n-0.25n-0.17n-0.45n-0.32n-0.33n-0.32n-0.29n-0.32n-0.25n-0.05n-0.01n-0.26n-0.48n-0.37n-0.2n-0.15n-0.08n-0.14n-0.13n-0.12n-0.1n0.13n-0.01n0.06n-0.17n-0.01n0.09n0.05n-0.16n0.05n-0.02n0.04n0.17n0.19n0.05n0.15n0.13n0.09n0.04n0.11n-0.03n0.03n0.15n0.04n-0.02n

    42、-0.13n0.02n0.07n0.2n-0.03n-0.07n-0.19n0.09n0.11n0.06n0.01n0.08n0.02n0.02n-0.27n-0.18n-0.09n-0.02n-0.13n0.02n0.03n-0.12n-0.08n0.17n-0.09n-0.04n-0.24n-0.16n-0.09n0.12n0.27n0.42n0.02n0.3n0.09n0.05nmar3=arima(x3,order=c(1,1,1)nxr3=resid(mar3)nBox.test(xr3,lag=12,type=Ljung)nBox.test(xr3,lag=6,type=Ljung

    43、)nabs(mar3$coef)/sqrt(diag(mar3$var.coef)n1-pnorm(abs(mar3$coef)/sqrt(diag(mar3$var.coef)模型优化n问题提出n当一个拟合模型通过了检验,说明在一定的置信水平下,该模型能有效地拟合观察值序列的波动,但这种有效模型并不是唯一的。n优化的目的n选择相对最优模型 例3.13:拟合某一化学序列n x4-scan()n1:47n2:64n3:23n4:71n5:38n6:64n7:55n8:41n9:59n10:48n11:71n12:35n13:57n14:40n15:58n16:44n17:80n18:55n19:

    44、37n20:74n21:51n22:57n23:50n24:60n25:45n26:57n27:50n28:45n29:25n30:59n31:50n32:71n33:56n34:74n35:50n36:58n37:45n38:54n39:36n40:54n41:48n42:55n43:45n44:57n45:50n46:62n47:44n48:64n49:43n50:52n51:38n52:59n53:55n54:41n55:53n56:49n57:34n58:35n59:54n60:45n61:68n62:38n63:50n64:60n65:39n66:59n67:40n68:57n69:

    45、54n70:23n71:n par(mfrow=c(3,1)n ts.plot(x4)npacf(x4)n acf(x4)nmar4=arima(x4,order=c(0,0,2)nxr4=resid(mar4)nBox.test(xr4,lag=6,type=Ljung)nBox.test(xr4,lag=12,type=Ljung)n1-pnorm(abs(mar4$coef)/sqrt(diag(mar4$var.coef)nabs(mar4$coef)/sqrt(diag(mar4$var.coef)nmar42=arima(x4,order=c(1,0,0)nxr42=resid(m

    46、ar42)nBox.test(xr42,lag=6,type=Ljung)nBox.test(xr42,lag=12,type=Ljung)n1-pnorm(abs(mar42$coef)/sqrt(diag(mar42$var.coef)nabs(mar42$coef)/sqrt(diag(mar42$var.coef)序列自相关图序列偏自相关图拟合模型一n根据自相关系数2阶截尾,拟合MA(2)模型n参数估计n模型检验n模型显著有效 n三参数均显著 ttBByield)31009.032286.01(17301.512拟合模型二n根据偏自相关系数1阶截尾,拟合AR(1)模型n参数估计n模型检

    47、验n模型显著有效 n两参数均显著 Byieldtt42481.0126169.51问题n同一个序列可以构造两个拟合模型,两个模型都显著有效,那么到底该选择哪个模型用于统计推断呢?n解决办法n确定适当的比较准则,构造适当的统计量,确定相对最优AIC准则n最小信息量准则(An Information Criterion)n指导思想n似然函数值越大越好 n未知参数的个数越少越好 nAIC统计量)(2)ln(2未知参数个数nAICSBC准则nAIC准则的缺陷n在样本容量趋于无穷大时,由AIC准则选择的模型不收敛于真实模型,它通常比真实模型所含的未知参数个数要多 nSBC统计量)(ln()ln(2未知参

    48、数nnSBC例3.13续n用AIC准则和SBC准则评判例3.13中两个拟合模型的相对优劣 n结果nAR(1)优于MA(2)n mar4$aicn mar42$aic序列预测n线性预测函数n预测方差最小原则10titiixC x()()min()t lxttVare lVar e l序列分解 111111()()t lt lt lltltltttxGGGGe lx l 预测误差预测误差预测值预测值)(),()(),(11leVarxxxVarlxxxxEtttltttlt误差分析n估计误差n期望n方差1111)(tlltlttGGle1022)(liitGleVar0)(leEtAR(p)序列的

    49、预测n预测值n预测方差n95置信区间)()1()(1plxlxlxtpt22121)1()(ltGGleVar12221112()1tlx lzGG例3.14n已知某超市月销售额近似服从AR(2)模型(单位:万元/每月)n今年第一季度该超市月销售额分别为:101,96,97.2万元n请确定该超市第二季度每月销售额的95的置信区间 12100.60.3,(0,36)tttttxxxN例3.14解:预测值计算n四月份n五月份n六月份12.973.06.010)1(233xxx432.973.0)1(6.010)2(333xxx5952.97)1(3.0)2(6.010)3(333xxx例3.14解

    50、:预测方差的计算nGREEN函数n方差01102112010.60.360.30.66GGGGGG6416.64)()3(96.48)()2(36)1(222212032212032203GGGeVarGGeVarGeVar例3.14解:置信区间n公式n估计结果)(96.1)(,)(96.1)(3333leVarlxleVarlx例2.5:北京市城乡居民定期储蓄比例序列拟合与预测图 MA(q)序列的预测n预测值n预测方差qlqllxqliiltit,)(qlqlleVarqlt,)1(,)1()(222122121例3.15n已知某地区每年常驻人口数量近似服从MA(3)模型(单位:万):n最近

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:平稳非白噪声序列计算样本相关系数模型识别参数估计模型检验模型课件.ppt
    链接地址:https://www.163wenku.com/p-4258570.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库