热力学与统计物理期末考试整理课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《热力学与统计物理期末考试整理课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 热力学 统计 物理 期末考试 整理 课件
- 资源描述:
-
1、热力学与统计物理期末考试简答题第七章:能量均分定理:对于处在温度为T的平衡状态的经典系统,粒子能量表达式中每一个独立平方项的平均值等于kT/2。主要的不足之处:1.低温下氢的热容量所得结果与实验不符。2.解释不了原子内电子对气体的热容量为什么没有贡献。3.解释不了双原子分子的振动为什么对系统的热容量没有贡献。(见7.5节原因分析)关于“双原子分子的振动为什么对系统的热容量没有贡献”的叙述性解释在常温范围内双原子分子的振动能级间距远大于kT.由于能级分立,振子必须取得能量才有可能跃迁到激发态。在 的情况下,振子取得 的热运动能量而跃迁到激发态的概率是极小的。因此几乎全部振子都冻结在基态。当气体温
2、度升高时,它们几乎不吸收能量。这就是在常温下振动自由度不参与能量均分的原因。vT第八章:波色爱因斯坦凝聚:在 时,宏观量级的粒子在能级 凝聚,这一现象称为波色爱因斯坦凝聚。对于波色粒子,一个量子态所能容纳的粒子数目不受限制,因此绝对零度下波色粒子将全部出在 的最低能级。凝聚在 的粒子集合称为玻色凝聚体。凝聚体不但能量、动量为零,由于凝聚体的微观状态完全确定,熵也为零。凝聚态中的粒子动量为零,对压强就没有贡献。0cTT 00第三章单元系的复相平衡条件整个系统达到平衡时,两相的温度、压强和化学势必须分别相等。这就是单元复相系达到平衡所要满足的平衡条件。ppTT(热平衡条件热平衡条件)(力学平衡条件
3、)(力学平衡条件)(相变平衡条件)(相变平衡条件)第四章化学平衡条件单相化学反应的化学平衡条件。单相化学反应的化学平衡条件。0 iiiv 如果由化学平衡条件求得的如果由化学平衡条件求得的 满足满足 ,反应就,反应就可以达到平衡。可以达到平衡。abnnn n 多元复相系的平衡条件多元复相系的平衡条件 TTT 21 ppp 21 ii 1,2,1 ki,2,1 平衡条件全部用强度量决定。平衡条件全部用强度量决定。证明题2.8证明2222,pVTVpTCCpVTTVTpT 并由此导出00202202,.VVVVVppppppCCTdVTpCCTdpT根据以上两式证明,理想气体的定容热容量和定压热容呈
4、只是温度 T的函数.解:式(2.2.5)给出.VVSCTT(1)以 T,V 为状态参量,将上式求对V 的偏导数,有2222,VTVCSSSTTTVV TT VT (2)其中第二步交换了偏导数的求导次序,第三步应用了麦氏关系(2.2.3).由理想气体的物态方程pVnRT知,在 V 不变时,p是 T 的线性函数,即220.VpT所以0.VTCV这意味着,理想气体的定容热容量只是温度T 的函数.在恒定温度下将式(2)积分,得0202.VVVVVpCCTdVT这意味着,理想气体的定容热容量只是温度 T 的函数.在恒定温度下将式(2)积分,得0202.VVVVVpCCTdVT(3)式(3)表明,只要测得
5、系统在体积为0V时的定容热容量,任意体积下的定容热容量都可根据物态方程计算出来.同理,式(2.2.8)给出.ppSCTT(4)以,Tp为状态参量,将上式再求对p的偏导数,有2222.ppTCSSSTTTpp TT pT (5)其中第二步交换了求偏导数的次序,第三步应用了麦氏关系(2.2.4).由理想气体的物态方程pVnRT知,在p不变时V是T的线性函数,即220.pVT所以0.pTCp这意味着理想气体的定压热容量也只是温度 T 的函数.在恒定温度下将式(5)积分,得0202.pppppVCCTdpT式(6)表明,只要测得系统在压强为0p时的定压热容量,任意压强下的定压热容量都可根据物态方程计算
6、出来.3.1证明下列平衡判据(假设S0);(a)在,S V不变的情形下,稳定平衡态的U最小.(b)在,Sp不变的情形下,稳定平衡态的H最小.(c)在,Hp不变的情形下,稳定平衡态的S最小.(d)在,F V不变的情形下,稳定平衡态的T最小.(e)在,Gp不变的情形下,稳定平衡态的T最小.(f)在,US不变的情形下,稳定平衡态的V最小.(g)在,F T不变的情形下,稳定平衡态的V最小.解:为了判定在给定的外加约束条件下系统的某状态是否为稳定的平衡状态,设想系统围绕该状态发生各种可能的自发虚变动.由于不存在自发的可逆变动,根据热力学第二定律的数学表述(式(1.16.4),在虚变动中必有,UT SW(
7、1)式中U和S是虚变动前后系统内能和熵的改变,W是虚变动中外界所做的功,T是虚变动中与系统交换热量的热源温度.由于虚变动只涉及无穷小的变化,T也等于系统的温度.下面根据式(1)就各种外加约束条件导出相应的平衡判据.(a)在,S V不变的情形下,有0,0.SW根据式(1),在虚变动中必有0.U(2)如果系统达到了U为极小的状态,它的内能不可能再减少,系统就不可能自发发生任何宏观的变化而处在稳定的平衡状态,因此,在,S V不变的情形下,稳定平衡态的U最小.(b)在,Sp不变的情形下,有0,SWpdV 根据式(1),在虚变动中必有0,Up V或0.H(3)如果系统达到了 H 为极小的状态,它的焓不可
8、能再减少,系统就不可能自发发生任何宏观的变化而处在稳定的平衡状态,因此,在,Sp不变的情形下,稳定平衡态的 H 最小.(c)根据焓的定义HUpV和式(1)知在虚变动中必有.HT SVpp VW在 H 和p不变的的情形下,有0,0,HpWp V 在虚变动中必有0.T S(4)如果系统达到了S为极大的状态,它的熵不可能再增加,系统就不可能自发发生任何宏观的变化而处在稳定的平衡状态,因此,在,Hp不变的情形下,稳定平衡态的S最大.(d)由自由能的定义FUTS和式(1)知在虚变动中必有.FS TW 在F和V不变的情形下,有0,0,FW故在虚变动中必有0.S T(5)由于0S,如果系统达到了T为极小的状
9、态,它的温度不可能再降低,系统就不可能自发发生任何宏观的变化而处在稳定的平衡状态,因此,在,F V不变的情形下,稳定平衡态的T最小.(e)根据吉布斯函数的定义GUTSpV和式(1)知在虚变动中必有.GS Tp VVpW 在,Gp不变的情形下,有0,0,GpWp V 故在虚变动中必有0.S T(6)由于0S,如果系统达到了T为极小的状态,它的温度不可能再降低,系统就不可能自发发生任何宏观的变化而处在稳定的平衡状态,因此,在,Gp不变的情形下,稳定的平衡态的T最小.(f)在,US不变的情形下,根据式(1)知在虚变动中心有0.W 上式表明,在,US不变的情形下系统发生任何的宏观变化时,外界必做功,即
10、系统的体积必缩小.如果系统已经达到了V为最小的状态,体积不可能再缩小,系统就不可能自发发生任何宏观的变化而处在稳定的平衡状态,因此,在,US不变的情形下,稳定平衡态的V最小.(g)根据自由能的定义FUTS和式(1)知在虚变动中必有.FS TW 在,F T不变的情形下,有0,0,FT必有0W(8)上式表明,在,FT不变的情形下,系统发生任何宏观的变化时,外界必做功,即系统的体积必缩小.如果系统已经达到了V为最小的状态,体积不可能再缩小,系统就不可能自发发生任何宏观的变化而处在稳定的平衡状态,因此,在,FT不变的情形下,稳定平衡态的V最小.8.4 光子气体光子气体一、空窖中的(电磁)辐射场一、空窖
11、中的(电磁)辐射场一封闭空窖,窖壁原子不断向空窖发射并从空窖一封闭空窖,窖壁原子不断向空窖发射并从空窖吸收电磁波,经过一定时间,空窖内的电磁辐射吸收电磁波,经过一定时间,空窖内的电磁辐射和窖壁达到平衡,称为平衡辐射。(和窖壁达到平衡,称为平衡辐射。(研究对象研究对象)2、光子观点光子观点1、波动观点、波动观点二、普朗克公式二、普朗克公式光子气体系统的统计分布光子气体系统的统计分布11lllae能级上每一个量子态的平均光子数能级上每一个量子态的平均光子数lkpcpck1leall(光子子数不守恒光子子数不守恒)decVdTUkT1,3320 Nall 0 Ealll 黑体、黑体辐射黑体、黑体辐射
12、cp (1)在)在 范围内,光子可能的量子态数为范围内,光子可能的量子态数为zyxdpdpdxdydzdp3hdpdpdxdydzdpzyx2 (2)在)在 体积体积V 内,在内,在 的动量大小范围内,的动量大小范围内,在在 动量方向范围内,光子可能的量子态动量方向范围内,光子可能的量子态数为数为 dpppdd,32sin2hddpdVp (3)在)在 体积体积V 内,在内,在 的动量大小范围内,的动量大小范围内,光子可能的量子态数为光子可能的量子态数为 dppp328hdpVp (4)在)在 体积体积V 内,在内,在 的能量范围内,的能量范围内,光子可能的量子态数为光子可能的量子态数为 d
13、(5)在)在 体积体积V 内,在内,在 的圆频率范围内,的圆频率范围内,光子可能的量子态数为光子可能的量子态数为 d 能级上每一个量子态的平均光子数能级上每一个量子态的平均光子数l11lllae328chdV322cdV (7)在)在 体积体积V 内,在内,在 的圆频率范围内的的圆频率范围内的光子对辐射场内能的贡献为光子对辐射场内能的贡献为 d 普朗克公式普朗克公式辐射场内能按频率的分布辐射场内能按频率的分布 (6)在)在 体积体积V 内,在内,在 的圆频率范围内,的圆频率范围内,光子数为光子数为 ddcV32211edecVkT1232decVkT1232dTUdecVkT,13326.1试
展开阅读全文