书签 分享 收藏 举报 版权申诉 / 103
上传文档赚钱

类型物理化学第二章热力学第一定律课件.ppt

  • 上传人(卖家):晟晟文业
  • 文档编号:4238204
  • 上传时间:2022-11-22
  • 格式:PPT
  • 页数:103
  • 大小:4.92MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《物理化学第二章热力学第一定律课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    物理化学 第二 热力学 第一 定律 课件
    资源描述:

    1、1热力学是自然科学中建立最早的学科之一热力学是自然科学中建立最早的学科之一 1.1.第一定律:能量守恒,解决过程的能量衡算第一定律:能量守恒,解决过程的能量衡算 问题(功、热、热力学能等)问题(功、热、热力学能等)2.2.第二定律:过程进行的方向判据第二定律:过程进行的方向判据3.3.第三定律:解决物质熵的计算第三定律:解决物质熵的计算第二章第二章热力学第一定律热力学第一定律2 热力学基本定律是生产经验和科学实验的总结,它们不能用热力学基本定律是生产经验和科学实验的总结,它们不能用其它理论方法加以证明,但其正确性毋庸置疑。其它理论方法加以证明,但其正确性毋庸置疑。需要指出:需要指出:(1 1)

    2、经典热力学研究含有大量质点的宏观系统:其原理、)经典热力学研究含有大量质点的宏观系统:其原理、结论结论不能用于描述单个的微观粒子;不能用于描述单个的微观粒子;(2 2)经典热力学只考虑平衡问题:只考虑系统由始态到末态的)经典热力学只考虑平衡问题:只考虑系统由始态到末态的净结果,并依此解决诸如过程能量衡算、过程的方向、限度的判净结果,并依此解决诸如过程能量衡算、过程的方向、限度的判断等热力学问题,至于由始态到末态的过程是如何发生与进行的、断等热力学问题,至于由始态到末态的过程是如何发生与进行的、沿什么途径、变化的快慢等等一些问题,经典热力学往往不予考沿什么途径、变化的快慢等等一些问题,经典热力学

    3、往往不予考虑。虑。32.1 2.1 基本概念和术语基本概念和术语1.1.系统与环境系统与环境2.2.状态与状态函数状态与状态函数 3.3.过程与途径过程与途径4.4.功和热功和热 5.5.热力学能热力学能 1.系统与环境系统与环境系统系统:作为研究对象的那部分物质:作为研究对象的那部分物质 环境环境:系统以外与之相联系的那部分物质:系统以外与之相联系的那部分物质 系统与环境系统与环境的相互作用的相互作用物质交换物质交换能量交换能量交换传热传热作功作功体积功体积功非体积功非体积功4三类系统:三类系统:隔离系统隔离系统(isolated system):与环境间与环境间无物质交换,无能量交换;无物

    4、质交换,无能量交换;封闭系统封闭系统(closed system):与环境间与环境间无物质交换,有能量交换;无物质交换,有能量交换;敞开系统敞开系统(open system):与环境间与环境间有物质交换,有能量交换;有物质交换,有能量交换;52.状态与状态函数状态与状态函数(1 1)状态与状态函数)状态与状态函数 系统的性质系统的性质:决定系统状态的物理量:决定系统状态的物理量(如如p,V,T,Cp,m)系统的状态系统的状态:热力学用系统所有的性质来描述它所处的状:热力学用系统所有的性质来描述它所处的状态,当系统所有性质都有确定值时,则系统处于一定的状态态,当系统所有性质都有确定值时,则系统处

    5、于一定的状态 状态函数状态函数:系统处于平衡态时的热力学性质(如:系统处于平衡态时的热力学性质(如U、H、p、V、T 等)是系统状态的单值函数,故称为状态函数。等)是系统状态的单值函数,故称为状态函数。6状态函数特点状态函数特点:l 状态改变,状态函数值至少有一个改变状态改变,状态函数值至少有一个改变l 异途同归,值变相等,周而复始,其值不变异途同归,值变相等,周而复始,其值不变l 定量,组成不变的均相流体系统,定量,组成不变的均相流体系统,任一状态函数是是另外两任一状态函数是是另外两个状态函数的函数,如个状态函数的函数,如V=f(T,p)l 状态函数具有全微分特性:状态函数具有全微分特性:d

    6、0 x=7(2)状态函数的分类状态函数的分类广度量和强度量广度量和强度量 注意:由注意:由任何两种广度性质之比得出的物理量则为强度量,任何两种广度性质之比得出的物理量则为强度量,如摩尔体积等如摩尔体积等强度量强度量:没有加和性(如:没有加和性(如p、)广度量广度量:具有加和性(如:具有加和性(如、m、)状态函数状态函数按状态函数的数值是否与物质的数量有关,将其分为广度量按状态函数的数值是否与物质的数量有关,将其分为广度量(或称广度性质)和强度量(或称强度性质)。(或称广度性质)和强度量(或称强度性质)。8(3)平衡态平衡态当系统与环境间的联系被隔绝后,系统的热力学性质不随当系统与环境间的联系被

    7、隔绝后,系统的热力学性质不随时间而变化,就称系统处于时间而变化,就称系统处于热力学平衡态热力学平衡态。热力学研究的对象就是处于平衡态的系统。热力学研究的对象就是处于平衡态的系统。系统处于平衡态应满足:系统处于平衡态应满足:1)热平衡热平衡 heat equilibrium:系统各部分系统各部分T相同相同;2)力平衡力平衡 force equilibrium:系统各部分系统各部分p相同相同;3)相平衡相平衡 phase equilibrium:物质在各相分布物质在各相分布 不随时不随时 间变化间变化;4)化学平衡化学平衡chemical equilibrium:系统组成不随时间变化系统组成不随时

    8、间变化.9物理化学中主要讨论三种过程物理化学中主要讨论三种过程:单纯单纯pVTpVT变化变化相变过程,相变过程,如气化,凝固,晶型转变如气化,凝固,晶型转变化学变化过程化学变化过程g g 当系统从一个状态变化至另一状态时,系统即进行了一个过程。当系统从一个状态变化至另一状态时,系统即进行了一个过程。系统可以从同一始态出发,经不同的途径变化至同一末态。系统可以从同一始态出发,经不同的途径变化至同一末态。3.过程与途径过程与途径101)1)恒温过程:恒温过程:变化过程中变化过程中(系系)=T T(环环)=定值定值(d(dT T=0)=0)(始始)=T T(终终),为等温过程,为等温过程)()(T

    9、T=0)=0)根据过程进行的特定条件根据过程进行的特定条件 ,有:,有:2)2)恒压过程:恒压过程:变化过程中变化过程中p p(系系)=p p(环环)=定值定值(d(dp p=0)=0)(始始)=(终终),为等压过程,为等压过程 )()(p p=0)=0)113)恒容过程:恒容过程:过程中系统的体积始终保持不变,体积功过程中系统的体积始终保持不变,体积功W=04)绝热过程:绝热过程:系统与环境间无热交换的过程,过程热系统与环境间无热交换的过程,过程热Q05)循环过程:循环过程:经历一系列变化后又回到始态的过程。经历一系列变化后又回到始态的过程。循环过程前后所有状态函数变化量均为零循环过程前后所

    10、有状态函数变化量均为零。124.功和热功和热功和热功和热都是能量传递过程中表现出来的形式都是能量传递过程中表现出来的形式 不是能量存在的形式不是能量存在的形式 1)1)功功 功用功用 符号表示。符号表示。符号规定:系统得到环境所作的功时符号规定:系统得到环境所作的功时 系统对环境作功时系统对环境作功时W0W 0W 0Q 热是途径函数热是途径函数 18 U是系统内部所储存的是系统内部所储存的各种各种能量能量的总和的总和 分子平动能、转动能分子平动能、转动能 包括包括 分子间相互作用的势能分子间相互作用的势能 分子内部分子内部各原子间的振动各原子间的振动、电子及核电子及核运动运动5.热力学能热力学

    11、能U 热力学系统由大量运动着微观粒子热力学系统由大量运动着微观粒子(分子、原子和离子分子、原子和离子等)所组成,等)所组成,系统的热力学能是指系统内部所有粒子全部能系统的热力学能是指系统内部所有粒子全部能量的总和量的总和 19U 是状态函数是状态函数 对指定系统,若对指定系统,若n一定,有一定,有 U 是广度量是广度量,具有加和性具有加和性(,)Uf T V=()()dddVTUUUTVTV=+20U 的绝对值无法求,但的绝对值无法求,但 U可求可求 U只取决于始末态的状态,与途径无关只取决于始末态的状态,与途径无关不同途径,不同途径,W、Q 不同不同但但 U U1 U2 U3 例:例:始态始

    12、态 末态末态13221热力学第一定律的本质是能量守恒原理,即隔离系统无论经历热力学第一定律的本质是能量守恒原理,即隔离系统无论经历何种变化,其能量守恒何种变化,其能量守恒2.2 2.2 热力学第一定律热力学第一定律1.热力学第一定律热力学第一定律 热力学第一定律的其它说法:热力学第一定律的其它说法:不消耗能量而能不断对外作功的机器不消耗能量而能不断对外作功的机器第一类永动机是不可第一类永动机是不可能的能的。22若系统发生微小变化,有:若系统发生微小变化,有:2.封闭系统热力学第一定律的数学形式封闭系统热力学第一定律的数学形式 系统热力学能(内能)的增量;系统热力学能(内能)的增量;Q 系统与环

    13、境交换的热,得热为,失热为系统与环境交换的热,得热为,失热为 W 系统与环境交换的功,得功为,失功为系统与环境交换的功,得功为,失功为UQWD=+dUQW=+233.焦耳实验焦耳实验焦耳于焦耳于18431843年进行了低压气体的自由膨胀实验:年进行了低压气体的自由膨胀实验:实验中发现水温维持不变实验中发现水温维持不变 理想气体向真空膨胀:理想气体向真空膨胀:W 0;过程中水温未变:过程中水温未变:Q 0 U 0()d dd dd dTVUf T,VUUUVTVT (任何气体)(任何气体)24又又 dT=0,dU=0,dV 00TUV 恒温时,恒温时,U 不随不随V 或或 p 变化变化 U=f(

    14、T)理想气体的理想气体的U只是只是T 的函数的函数(液体、固体近似成立)(液体、固体近似成立)(理想气体)(理想气体)这一由实验得出的结果也可以用理想气体模型解释:理想气体分这一由实验得出的结果也可以用理想气体模型解释:理想气体分子间没有相互作用力,因而不存在分子间相互作用的势能,其热子间没有相互作用力,因而不存在分子间相互作用的势能,其热力学能只是分子的平动、转动、分子内部各原子间的振动、电子力学能只是分子的平动、转动、分子内部各原子间的振动、电子的运动、核的运动的能量等,而这些能量均只取决于温度。的运动、核的运动的能量等,而这些能量均只取决于温度。252.3 恒容热、恒压热及焓恒容热、恒压

    15、热及焓对于封闭系统,对于封闭系统,W =0 时的恒容过程:时的恒容过程:dV=0,W=0d dVVQUQU 1.恒容热(恒容热(QV):):恒容热与过程的热力学能变在量值上相等恒容热与过程的热力学能变在量值上相等 26对于封闭系统,对于封闭系统,W =0 时的恒压过程:时的恒压过程:2.恒压热(恒压热(Qp)及焓:)及焓:由热力学第一定律可得由热力学第一定律可得:()()amb21211122WpVVp VVp Vp V=-=-=-()()222111 =pQUWUp VUp V=D-+-+恒压过程:系统的压力与环境的压力相等且恒定不变恒压过程:系统的压力与环境的压力相等且恒定不变常数ambp

    16、p=27H为焓,为状态函数,广延量,为焓,为状态函数,广延量,单位单位 J注:注:H 的计算的计算的的基本公式:基本公式:H=U+(pV)恒压过程恒压过程 H=Q 非恒压过程非恒压过程 H QdefHUpV=+定义定义:pQH=D即恒压热与过程的焓能变在量值上相等即恒压热与过程的焓能变在量值上相等 dpQH=28理想气体,单纯理想气体,单纯 pVT 变化,恒温时:变化,恒温时:U=0 H=U+(pV)=0+(pV)=(nRT)=nR T=0H=f(T)理想气体单纯理想气体单纯 pVT 变化时,变化时,H 只是只是 T 的函数的函数(液体、固体近似成立)(液体、固体近似成立)293.QV=U 及

    17、及 Qp=H 的意义的意义QVQp可测量可测量 U H状态函数状态函数 量热实验量热实验状态函数状态函数法计算法计算盖斯定律:盖斯定律:在恒容或恒压过程中,化学反应的热仅与始末在恒容或恒压过程中,化学反应的热仅与始末状态有关而与具体途径无关。状态有关而与具体途径无关。302.4 摩尔热容摩尔热容热热显热(显热(pVT变化中的热变化中的热)潜热(相变热)潜热(相变热)反应热反应热(焓焓)摩尔热容摩尔热容相变焓相变焓标准摩尔生成焓和燃烧焓标准摩尔生成焓和燃烧焓主要介绍摩尔定容热容和摩尔定压热容主要介绍摩尔定容热容和摩尔定压热容 311.摩尔定容热容摩尔定容热容(1)定义定义 在某温度在某温度T 时

    18、,物质的量为时,物质的量为n 的物质在恒容且非体积的物质在恒容且非体积功为零的条件下,若温度升高无限小量功为零的条件下,若温度升高无限小量dT 所需要的热量所需要的热量为为Q,则就定义,则就定义 为该物质在该温度下的摩尔定容为该物质在该温度下的摩尔定容热容,以热容,以 表示,表示,1dVQnT,mVC,m1dVVQCnT=32mdd,VVVQUn U=()()m,m1VVVUUCnTT=对恒容过程对恒容过程 代入有代入有 定义式定义式,mVC单位:单位:11JmolK-33(2)应用应用计算单纯计算单纯pVT 过程的过程的DU 21,mdTVVTQUnCT=D=恒容过程:恒容过程:(理想气体)

    19、(理想气体)21,mdTVTUnCTD=但但 QU D非恒容过程:非恒容过程:理想气体理想气体 的必然结果的必然结果()Uf T=342.摩尔定压热容摩尔定压热容(1)定义定义 在某温度在某温度T 时,物质的量为时,物质的量为n 的物质在恒压且非体积的物质在恒压且非体积功为零的条件下,若温度升高无限小量功为零的条件下,若温度升高无限小量dT 所需要的热量所需要的热量为为Q,则就定义,则就定义 为该物质在该温度下的摩尔定压为该物质在该温度下的摩尔定压热容,以热容,以 表示,表示,1dpQnT,mpC,m1dppQCnT=35对恒压过程对恒压过程 代入有代入有 定义式定义式,mpC单位:单位:11

    20、JmolK-m,ddpppQHn H=()()m,m1pppHHCnTT=36(2)应用应用计算单纯计算单纯pVT 过程过程DH 恒压过程:恒压过程:QH D21,mdTppTQHnCT=D=非恒压过程:非恒压过程:21,mdTpTHnCTD=理想气体理想气体 的必然结果的必然结果()Hf T=理想气体:理想气体:凝聚态物质:凝聚态物质:21,mdTpTHnCTD=凝聚态物质忽略凝聚态物质忽略p 影响的结果影响的结果 21,mdTpTUHnCTD D=373.和和 的关系的关系,mpC,mVC()mm,m,mmmmmmm pVpVVpppVHUCCTTUpVUTTUVUpTTT-=-+=-=+

    21、-()mmmmmdddVTUUUTVTV=+由()mm,Uf T V=38mmmmmpVTpUUUVTTVT=+代入上式有:代入上式有:()mm,m,mmpVpTUVCCpVT-=+393522m mm mV,p,CR,CR 5722m mm mV,p,CR,CR 单原子分子单原子分子双原子分子双原子分子0m mm mm mm m()()Tpp,V,UVR,CCRVTp 理想气体:理想气体:(见第九章)见第九章)40例例1.容积为容积为0.1m3的恒容容器中有的恒容容器中有4 mol Ar(g)及及2 mol Cu(s),始态温度为,始态温度为0。现将系统加热至。现将系统加热至100,求过程的

    22、,求过程的Q、W、DU及及DH。已知已知Ar(g)及及 Cu(s)的的Cp,m分别为分别为 和和 ,并假设其不随温度变化,并假设其不随温度变化 JmolK1120.786-解:解:Ar(g)可看作理想气体可看作理想气体 JmolK1124.435-mm JKmol11,12.472VpCCR-=-=Ar,gCu,s()()UUUD=D+D()mAr,gAr,gAr,g,21()()()VUnCTTD=-()mCu,sCu,sCu,sCu,s,21()()()()pUHnCTTD D=-41()()()mmAr,gAr,gCu,sCu,s J J,21()()()()412.472224.435

    23、373.15273.159876VpUnCnCTTD=+-=-=()()()mmAr,gAr,gCu,sCu,s J kJ,21()()()()420.786224.435373.15273.1513.201ppHnCnCTTD=+-=-=kJ9.875VQU=D=又因过程恒容,故又因过程恒容,故0W=42(2 2)曲线:直观曲线:直观 4.和和 随随T 的关系的关系,mpC,mVC三种表示方法:三种表示方法:(1 1)数据列表:)数据列表:,mpCT-(3)函数关系式:便于积分、应用函数关系式:便于积分、应用2,mpCabTcT=+23,mpCabTcTdT=+435.5.平均摩尔热容平均摩

    24、尔热容的定义:的定义:,mpC()()21,m,m2121dTpTppCTQCn TTTT=-恒压热的计算公式恒压热的计算公式:即单位物质的量的物质在恒压且非体积功为零即单位物质的量的物质在恒压且非体积功为零的条件下,在的条件下,在T1T2温度范围内,温度平均升温度范围内,温度平均升高单位温度所需要的热量高单位温度所需要的热量(),m21ppQnCTT=-442.5 2.5 相变焓相变焓相变:相变:物质不同相态之间的转变,如蒸发、升华、熔化物质不同相态之间的转变,如蒸发、升华、熔化 和晶型转变等。和晶型转变等。相:相:系统中性质完全相同的均匀部分系统中性质完全相同的均匀部分45 单位物质的量的

    25、物质在恒定温度及该温度平衡压力下发生相变单位物质的量的物质在恒定温度及该温度平衡压力下发生相变时对应的焓变,记作时对应的焓变,记作 ,单位:单位:1.摩尔相变焓摩尔相变焓 mHDmHnHD=D1kJmol-说明:说明:(1)(3)(2)m,mpHQD=(恒压且无非体积功)(恒压且无非体积功)()mHf TD=(常压下数据可查得)(常压下数据可查得)mmHHD=-D物质的量为物质的量为n:462.摩尔相变焓随温度的变化摩尔相变焓随温度的变化已知:已知:()m0HTD待求:待求:()mHTDB()B()B()B()pT pT00 pT00 pT mHTm0HT mH mH47()()()()mmm

    26、0mHTHHTHD=D+D+D()()()00m,m,md dTpTTpTHCTCTD=-()()0m,mdTpTHCTD=()()0mm0,mdTpTHTHTCTD=D+D()(),m,m,mpppCCCD=-其中其中 48()1vapm100 C40.64 kJmolH-D=()36211,mg,29.1614.4910(/K)2.02210(/K)JKmolpCTTT-=+()11,ml76.56 JKmolpC-=()vapm142.9 CHD138.43 kJmol-例:已知例:已知 100C、101.325 kPa下下,H2O(l)的摩尔蒸发焓的摩尔蒸发焓水的平均摩尔热容水的平均摩

    27、尔热容实验测定值为实验测定值为100C至至142.9C之间水蒸气的摩尔定压热容:之间水蒸气的摩尔定压热容:试求试求H2O(l)在在142.9C平衡条件下的蒸发焓平衡条件下的蒸发焓49解:假设水蒸气为理想气体,并忽略水的摩尔蒸发焓随蒸气解:假设水蒸气为理想气体,并忽略水的摩尔蒸发焓随蒸气压力的变化压力的变化 ()()416.05 Kvapmvapmvap,m373.15 K142.9 C100 CdpHHCTD=D+Dvap,m,m,m3621136211(g,)(l)29.1614.4910(/K)2.02210(/K)76.56 JmolK 47.4014.4910(/K)2.02210(/

    28、K)JmolKpppCCTCTTTT-D=-=+=-+其中其中50代入并积分得代入并积分得vapm416.05K36231373.15K11142.9 C40.6447.4014.49 10(/K)2.022 10(/K)d/K10 kJ mol40.641.80 kJ mol38.64 kJ molHTTT计算结果与实测值相比,相对误差计算结果与实测值相比,相对误差()38.8438.4338.431.07%-=512.7 化学反应焓化学反应焓1.反应进度反应进度描述反应描述反应 进行程度的物理量进行程度的物理量 定义式:定义式:defBBddnxn=BB0Bn=()BB,0BBBnnnxx

    29、nn-D=积分得:积分得:ABYZABYZnnnnxnnnnDDDD=522.摩尔反应焓摩尔反应焓在恒定在恒定T,恒定,恒定 p及反应各组分组成不变的情况下,若进行及反应各组分组成不变的情况下,若进行微量反应进度微量反应进度dx引起反应焓的变化为引起反应焓的变化为 dH,则折合为进行单,则折合为进行单位反应进度引起的焓变位反应进度引起的焓变dH/dx即为该条件下的摩尔反应焓即为该条件下的摩尔反应焓 rmBBddHHHnxD=53气体:任意温度气体:任意温度T T,标准压力,标准压力 下表现出理想气体性质的纯气体状态下表现出理想气体性质的纯气体状态3.标准摩尔反应焓标准摩尔反应焓(1)标准态)标

    30、准态100 kPap=$液体或固体液体或固体:任意温度:任意温度T,压力为标准压力,压力为标准压力 的纯液体或纯固体状态。的纯液体或纯固体状态。100 kPap=$54(2)标准摩尔反应焓)标准摩尔反应焓 反应中的各个组分均处在温度反应中的各个组分均处在温度T 的标准态下,其摩尔的标准态下,其摩尔反应焓就称为为该温度下的标准摩尔反应焓反应焓就称为为该温度下的标准摩尔反应焓 rmBBHHnD=$BH$只是温度的函数,则只是温度的函数,则()()()rmBBHTHTf TnD=$55注意:与实际反应的差别注意:与实际反应的差别理想气体反应:理想气体反应:rmrmHHD=D$rmrm12HHHHD=

    31、D+D-D$组成恒定组成恒定混合态混合态纯物质纯物质标准态标准态纯物质纯物质标准态标准态纯物质纯物质标准态标准态纯物质纯物质标准态标准态组成恒定组成恒定混合态混合态Tp、$Tp、$AaBbYyZzABabYZyzTp、$Tp、$Tp、Tp、rmH$rmH1H2H564.Qp,m与与QV,m的关系的关系()(),m,mrmrmrmrmrmrmm pVTQQHUUpVUUUpVUpV-=D-D=D+D-D=D-D+D=D+DABabYZyzTpV、TpV、TpV、,mrmpQH,mrmVQU rmU mTUYZyz57理想气体,固、液体理想气体,固、液体 TUm=0,m,mpVQQpV-=D反应中

    32、如有液、固相,它们的体积变化很小,可只考虑气反应中如有液、固相,它们的体积变化很小,可只考虑气体体积的变化,于是:体体积的变化,于是:,m,mB(g)pVQQRTn-=仅为参与反应的气态物质计量数代数和仅为参与反应的气态物质计量数代数和 B(g)n222B(g)2H(g)O(g)2H O(l)3n+=-2432B(g)NH COONH(s)2NH(g)CO(g)3n+=66222B(g)1C H(l)7O(g)6CO(g)3H O(g)1.52n+=582-8 2-8 标准摩尔反应焓的计算标准摩尔反应焓的计算1.标准摩尔生成焓标准摩尔生成焓基础热数据:标准摩尔生成焓和标准摩尔燃烧焓基础热数据:

    33、标准摩尔生成焓和标准摩尔燃烧焓 在温度为在温度为T 的标准态下,由稳定相态的单质生成化学的标准态下,由稳定相态的单质生成化学计量数计量数B=1的的相态的化合物相态的化合物B(),该生成反应的焓,该生成反应的焓变即为该化合物变即为该化合物B()在温度在温度T 时的标准摩尔生成焓时的标准摩尔生成焓 fm(,)HTD$1kJmol-单位单位:(1)定义)定义59自身自身0f fm mH 稳定单质:稳定单质:O2,N2,H2(g),Br2(l)C(石墨石墨),S(斜方晶斜方晶)(s)写化学反应计量式时,要注明物质的相态写化学反应计量式时,要注明物质的相态298.15 K22C()OgCOg标准态石墨(

    34、)()+298.15 K222HgS()2OgH SOl4标准态()正交()()+2COg()2H SOl4()在在298.15 K的标准摩尔生成焓对应如下反应的焓变:的标准摩尔生成焓对应如下反应的焓变:在在298.15 K的标准摩尔生成焓对应如下反应的焓变:的标准摩尔生成焓对应如下反应的焓变:60(2)由由 计算计算 rHm:例:例:25,p 下:下:rHmCH3OH(g)CO(g)+2H2(g)C+(1/2)O2+2H2 fHm(CO)2 fHm(H2)fHm(CH3OH)rmfm3fmfm2fm3fm(CH OH)(CO)2(H)(CH OH)(CO)HHHHHH$(注(注:可直接写公式

    35、计算,不必写上面的过程)可直接写公式计算,不必写上面的过程)fmHD25,p 下的下的 和和 可直接查表可直接查表fm3(CH OH)HD$fm(CO)HD$61()ABYZ()()()abyz+()()rmffffm,Ym,Zm,Bm,ABfm,B$HyHzHaHbHHnD=D+D-D+D=D$即即298.15 K下的标准摩尔反应焓等于同样温度下参与反应的下的标准摩尔反应焓等于同样温度下参与反应的各组分标准摩尔生成焓与其计量数乘积的代数和各组分标准摩尔生成焓与其计量数乘积的代数和 622.标准摩尔燃烧焓标准摩尔燃烧焓在温度为在温度为T 的标准态下,由化学计量数的标准态下,由化学计量数B=-1

    36、的的相相态的物质态的物质B()与氧进行完全氧化反应时与氧进行完全氧化反应时,该反应的焓,该反应的焓变即为该物质变即为该物质B()在温度在温度T 时的标准摩尔燃烧焓时的标准摩尔燃烧焓 1kJmol-单位单位:(1)定义)定义cm(,)HTD$63“完全氧化完全氧化”是指在没有催化剂作用下的自然燃烧是指在没有催化剂作用下的自然燃烧含含C元素:完全氧化产物为元素:完全氧化产物为 ,而不是而不是含含H元素:完全氧化产物为元素:完全氧化产物为 ,而不是,而不是含含S元素:完全氧化产物为元素:完全氧化产物为 ,而不是,而不是含含N元素:完全氧化产物为元素:完全氧化产物为 2COg()COg()2H O(l

    37、)2H O(g)2SO(g)3SO(g)2N(g)完全氧化物的完全氧化物的 cm0HD=$64(2)由由 计算计算 rHm:25,p 下:下:rHmCH3OH(g)CO(g)+2H2(g)CO2+2H2O cHm(CO)2 cHm(H2)cHm(CH3OH)+1.5O2+1.5O2rmcm3cmcm2cmcm2cm3(CH OH)(CO)2(H)(CO)2(H)(CH OH)HHHHHHH$25,p 下的下的 cHm可直接查表可直接查表(注(注:可直接写公式计算,不必写上面的过程)可直接写公式计算,不必写上面的过程)cmHD$65rmBcm,BHHnD=-D$()ABYZ()()()abyz+

    38、即即298.15 K下的标准摩尔反应焓等于同样温度下参与反下的标准摩尔反应焓等于同样温度下参与反应的各组分标准摩尔燃烧焓与其计量数乘积的代数和的应的各组分标准摩尔燃烧焓与其计量数乘积的代数和的负值负值 66298.15K,下的下的 可直接由手册查出可直接由手册查出 计算计算pr rm mH f fm mH c cm mH 但其它温度的但其它温度的 如何计算?如何计算?r rm mH 3.随温度的变化随温度的变化 -基希霍夫基希霍夫(Kirchhoff)公式公式 r rm mHT 67已知:已知:待求:待求:标准态标准态标准态标准态标准态标准态标准态标准态标准态标准态标准态标准态标准态标准态标准

    39、态标准态 A aT B b A a B bTTT298.15 K298.15 K298.15 K298.15 K Y y Y y Z z Z z1H2Hrm298.15 KH$rmHT$()()rmrm12298.15 KHTHHHD=D+D+D$68()()298.15K1,m,mA,B,dppTHaCbCTD=+()()2,m,m298.15KY,Z,dTppHyCzCTD=+()()rmrmr,m298.15K298.15 KdTpHTHCTD=D+D$()()()()()r,m,m,m,m,mB,mY,Z,A,B,B,ppppppCyCzCaCbCCnD=+-+=基希霍夫定律基希霍夫定

    40、律69不随不随T变化变化r rm mH 微分式:微分式:()rmr,mddpHTCTD=D$r,m0pCD=()()rmrm298.15 KHTHD=D$r,m0常数pCD=()()()rmrmr,m298.15K298.15KpHTHCTD=D+D-$其它其它T、p下的反应:下的反应:设计过程:设计过程:25、p 下的下的 rHm +pVT变化变化对于理想气体、液态、固体:对于理想气体、液态、固体:压力压力 p 的影响可忽略,可只考虑温度的影响可忽略,可只考虑温度 T 的影响的影响(基希霍夫定律基希霍夫定律)704.非恒温反应过程热的计算举例非恒温反应过程热的计算举例1)燃烧反应的最高火焰温

    41、度燃烧反应的最高火焰温度状态函数法:设计包含状态函数法:设计包含298.15 K、标准态下的反应途径、标准态下的反应途径以非恒温反应以非恒温反应绝热反应为例予以介绍绝热反应为例予以介绍:0pQH=D=2)爆炸反应的最高温度、最高压力爆炸反应的最高温度、最高压力0VQU=D=(恒压、绝热)(恒压、绝热)(恒容、绝热)(恒容、绝热)71例例 甲烷与过量甲烷与过量100%的空气混合,于始态的空气混合,于始态25C、101.325 kPa条件下燃烧,求燃烧产物能达到的最高温度。假设空气中仅有条件下燃烧,求燃烧产物能达到的最高温度。假设空气中仅有O2(g)、N2(g),且两者物质的量之比为,且两者物质的

    42、量之比为21/79,所需热容及燃,所需热容及燃烧焓数据见附录。烧焓数据见附录。解:甲烷于空气中燃烧反应为解:甲烷于空气中燃烧反应为4222CHg2OgCOg2H Og()()()()+以以1 mol甲烷作计算基准,过程始态各物质的量见框图甲烷作计算基准,过程始态各物质的量见框图整个过程:整个过程:0pQH=D=72始态始态末态末态4222CH:1 mol O:2 mol O:2 mol N:15.05 mol反应过量11298.15 K 101.325 kPaTp0pQH 1H2Hrm298.15 KH$2222CO:1 mol H O:2 mol O:2 mol N:15.05 mol反应过

    43、量22 101.325 kPaTp?4222CH:1 mol O:2 mol O:2 mol N:15.05 mol反应过量1298.15 K 100 kPaTp(标准态)$2222CO:1 mol H O:2 mol O:2 mol N:15.05 mol反应过量1298.15 K 100 kPaTp(标准态)$73()rm12298.15K0$HHHHD=D+D+D=rmfm2fm2fm4fm211298.15 KCO,g2H O,gCH,g2O,g 393.512241.8274.8120 kJ mol 802.34 kJ molHHHHH$10H222,m2,m2,m2,m2298.1

    44、5K236298.15K233263222CO2H O,g2O15.05Nd 552.576177.533 10K34.0933 10KdK J 552.576K298.1588.767 10K298.1511.364 10K298.15JTppppTHCCCCTTTTTTT代入求解得:代入求解得:21497 KT 21181 Ct=742-10 2-10 可逆过程与可逆体积功可逆过程与可逆体积功可逆过程:推动力无限小的理想化过程可逆过程:推动力无限小的理想化过程1.可逆过程可逆过程将推动力无限小、系统内部及系统与环境之间在无限将推动力无限小、系统内部及系统与环境之间在无限接近平衡条件下进行的

    45、过程,称为可逆过程。接近平衡条件下进行的过程,称为可逆过程。以一定量理想气体在气缸内恒温膨胀和恒温压缩过程以一定量理想气体在气缸内恒温膨胀和恒温压缩过程为例讨论可逆过程的特点:为例讨论可逆过程的特点:751mol理想气体在恒理想气体在恒T 下由始态下由始态(),00 3,TpV(),00,3TpV末态末态 76沿沿3条途径实现:条途径实现:(a)将两堆细砂一次拿掉:将两堆细砂一次拿掉:()a000003 22/3WpVVp VRT=-=-=-(b)将两堆细砂分两次拿掉:将两堆细砂分两次拿掉:()()b00000021.531.5 2.5/3WpVVpVVRT=-+-=-(c)每次拿掉一无限小的

    46、细砂,直至每次拿掉一无限小的细砂,直至将细沙全部拿完将细沙全部拿完00003c3d dln 3VVVVWp VRTVRTV=-=-=-77abcWWW恒温可逆压缩过程中,环境对系统作最小功恒温可逆压缩过程中,环境对系统作最小功 循环后的总功循环后的总功:a+a43WRT=b+b23WRT=c+c0W=80可逆循环过程可逆循环过程0W=0UD=0Q=因循环过程因循环过程由热力学第一定律由热力学第一定律UQWD=+知可逆循环过程知可逆循环过程系统经可逆膨胀及沿原途径的可逆压缩这一循环过程后,总的系统经可逆膨胀及沿原途径的可逆压缩这一循环过程后,总的结果是:系统与环境既没有得功,也没有失功;既没有吸

    47、热,结果是:系统与环境既没有得功,也没有失功;既没有吸热,也没有放热。系统与环境完全复原,没有留下任何也没有放热。系统与环境完全复原,没有留下任何“能量痕迹能量痕迹”,这正是,这正是“可逆可逆”二字含义所在二字含义所在 不可逆过程:循环后,系统复原,环境的功转化为等量的热,不可逆过程:循环后,系统复原,环境的功转化为等量的热,留下了留下了“痕迹痕迹”81每一个瞬间来对可逆与不可逆过程予以分析:每一个瞬间来对可逆与不可逆过程予以分析:不可逆过程:过程中系统内部的性质不均匀,且在不断变化,系不可逆过程:过程中系统内部的性质不均匀,且在不断变化,系统不具有一个确定的、能加以描述的状态统不具有一个确定

    48、的、能加以描述的状态可逆过程:过程中系统始终处于平衡可逆过程:过程中系统始终处于平衡若令过程逆向进行,逆向可逆过程(如上述压缩过程)一定经若令过程逆向进行,逆向可逆过程(如上述压缩过程)一定经历原可逆过程(即可逆膨胀)所经历的所有平衡状态点而沿原历原可逆过程(即可逆膨胀)所经历的所有平衡状态点而沿原路径回到始态,充分体现了过程路径回到始态,充分体现了过程“可逆可逆”的含义。而逆向不可的含义。而逆向不可逆过程中,因不存在明确的中间状态,可逆过程所体现的含义逆过程中,因不存在明确的中间状态,可逆过程所体现的含义无从谈起。无从谈起。822.可逆体积功的计算可逆体积功的计算21rd VVWp V=-(

    49、1)理想气体的恒温可逆体积功)理想气体的恒温可逆体积功 2211,r1221d=d ln lnVVTVVnRTWp VVVVnRTVpnRTp=-=83(2)理想气体绝热可逆体积功)理想气体绝热可逆体积功 m md dd dd dV,nRTnCTp VVV a、理想气体绝热可逆过程方程式理想气体绝热可逆过程方程式 绝热过程绝热过程:Qr=0r r d d UW 理想气体:理想气体:2211,mddTVVTVCRTVTV=-21,m12lnlnVTVCRTV=,m2112VR CTVTV=84112221VTpVTp=,m,mpVCCR-=利用利用 p,m2211R CTpTp=有:有:p,m,

    50、m221112VR CR CTpVTpV=理想气体绝热可逆过程方程式理想气体绝热可逆过程方程式 85绝热可逆过程方程式的其它形式:绝热可逆过程方程式的其它形式:12112TVTVg-=常数1TVg-=12112TpTpgg-=常数1Tpgg-=2112pVpVg=常数pVg=,m,mpVCCg=其中其中 称为理想气体热容比称为理想气体热容比 86b、理想气体绝热可逆体积功、理想气体绝热可逆体积功 2121a,r11111121d 1 d11 1VVVVWp Vp VVVp VVVgggggg-=-=-=-如已知始、末态温度,下式计算绝热体积功更方便:如已知始、末态温度,下式计算绝热体积功更方便

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:物理化学第二章热力学第一定律课件.ppt
    链接地址:https://www.163wenku.com/p-4238204.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库