数学物理方程课件第二章1分离变量法-.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《数学物理方程课件第二章1分离变量法-.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 物理 方程 课件 第二 分离 变量
- 资源描述:
-
1、数学物理方程与特殊函数数学物理方程与特殊函数第第2 2章分离变量法章分离变量法第二章第二章 分离变量法分离变量法一、有界弦的自由振动二、有限长杆上的热传导三、拉普拉斯方程的定解问题四、非齐次方程的解法五、非齐次边界条件的处理六、关于二阶常微分方程特征值问题的一些结论数学物理方程与特殊函数数学物理方程与特殊函数第第2 2章分离变量法章分离变量法基本思想:首先求出具有变量分离形式且满足边界条件的特解,然后由叠加原理作出这些解的线性组合,最后由其余的定解条件确定叠加系数。适用范围:波动问题、热传导问题、稳定场问题等特点:a.物理上由叠加原理作保证,数学上由解的唯一性作保证;b.把偏微分方程化为常微分
2、方程来处理,使问题简单化。22222,0,0(0,)0,(,)0,0(,0)(,0)(),(),0uuaxl ttxutu l ttu xu xxxxlt 数学物理方程与特殊函数数学物理方程与特殊函数第第2 2章分离变量法章分离变量法令(,)()()u x tX x T t带入方程:2()()()()X x Tta Xx T t2()()()()XxTtX xa T t 令2()()0()()0XxX xTta T t带入边界条件(0)()0,()()0XT tX l T t(0)0,()0XX l22222,0,0(0,)0,(,)0,0(,0)(,0)(),(),0uuaxl ttxutu
3、 l ttu xu xxxxlt 1 求两端固定的弦自由振动的规律一 有界弦的自由振动数学物理方程与特殊函数数学物理方程与特殊函数第第2 2章分离变量法章分离变量法()()0(0)0,()0XxX xXX l特征(固有)值问题:含有待定常数常微分方程在一定条 件下的求解问题特征(固有)值:使方程有非零解的常数值特征(固有)函数:和特征值相对应的非零解分情况讨论:01)()xxX xAeBe 00llABAeBe 00ABX02)()X xAxB00ABX()cossinX xAxBx0sin0ABl03)令 ,为非零实数 2(1,2,3,)nnl222(1,2,3,)nnnl222nl()si
4、n(1,2,3,)nnnXxBxnl数学物理方程与特殊函数数学物理方程与特殊函数第第2 2章分离变量法章分离变量法2222()()0nna nTtT tl()cos sin(1,2,3,)nnnn atn atT tCDnll(,)(cossin)sin(1,2,3,)nnnn an anux tCtDtxnlll11(,)(,)(cossin)sin(1,2,3,)nnnnnu x tux tn an anCtDtxnlll2()()0()()0XxX xTta T t22222,0,0(0,)0,(,)0,0(,0)(,0)(),(),0uuaxl ttxutu l ttu xu xxxx
5、lt 222(1,2,3,)nnnl()sin(1,2,3,)nnnXxBxnl数学物理方程与特殊函数数学物理方程与特殊函数第第2 2章分离变量法章分离变量法01(,)(,0)sin()ntnnu x tu xCxxl10(,)sin()nntu x tn anDxxtll1sin)sincos(nnnxlntlanDtlanCu2001 cos 2/sindd22llnlnlx xxl001sinsindcoscosd02llnmnmnmxx xxxxllll xxlmxlnCxxlmxlnnldsinsindsin)(010 mCl2lmxxlmxlC0dsin)(2lnxxlnxanD0
6、dsin)(2lnxxlnxlC0dsin)(2数学物理方程与特殊函数数学物理方程与特殊函数第第2 2章分离变量法章分离变量法)()(),(tTxXtxu2/lnnxlnBxXnnsin)(tlanDtlanCTnnnsincos1sin)sincos(nnnxlntlanDtlanC11nnnnnTXuulnxxlnxanD0dsin)(2lnxxlnxlC0dsin)(20 XX02 TaT分离变量求特征值和特征函数求另一个函数求通解确定常数分离变量法可以求解具有齐次边界条件的齐次偏微分方程。lxxtxuxxuttlututlxxuatu0),()0,(),()0,(0,0),(,0),0
7、(0,0,22222数学物理方程与特殊函数数学物理方程与特殊函数第第2 2章分离变量法章分离变量法2 解的性质 x=x0时:(,)(cossin)sinnnnn an anux tCtDtxlll其中:22arctannnnnnnnDn aACDlC00(,)sincos()nnnnnux tAxtlcos()sinnnnnAtxlxlnsin驻波法 2nlnlt=t0时:22nnnaflnnvfnllna 22Ta 00(,)cos()sinnnnnnux tAtxl(1,2,3,)n 数学物理方程与特殊函数数学物理方程与特殊函数第第2 2章分离变量法章分离变量法例1:设有一根长为10个单位
8、的弦,两端固定,初速为零,初位移为 ,求弦作微小横向振动时的位移。()(10)1000 xxx)()(),(tTxXtxuTXTX 410TTXX 41010 XX0104 TT0)()0(),0(tTXtu 0)10(,0)0(100,0XXxXX0)0(X0)()10(),10(tTXtu0)10(X100,0)0,(,1000)10()0,(0,0),10(),0(0,100,1022422xtxuxxxuttututxxutu解:数学物理方程与特殊函数数学物理方程与特殊函数第第2 2章分离变量法章分离变量法 0)10(,0)0(100,0XXxXX20 02 XX1010(0)0()0
9、XABX lAeBe0 BA0)(xXxxBeAexX)(0BAxxX)(0 BA0)(xX0 X20(0)0(10)sin100XAXB,3,2,1,10/nnn100/22nnxnBxXnn10sin)(xBxAxXsincos)(02 XX数学物理方程与特殊函数数学物理方程与特殊函数第第2 2章分离变量法章分离变量法,3,2,1,100/22nnnxnBxXnn10sin)(0104 TT010022 nnTnTtnDtnCTnnn10sin10cos1110sin)10sin10cos(nnnnnxntnDtnCuunnnTXu)10sin10cos(10sintnDtnCxnBnnn
10、xntnDtnCnn10sin)10sin10cos(100,0)0,(,1000)10()0,(0,0),10(),0(0,100,1022422xtxuxxxuttututxxutu0 XX0104 TT数学物理方程与特殊函数数学物理方程与特殊函数第第2 2章分离变量法章分离变量法110sin)10sin10cos(nnnxntnDtnCu1000)10(10sin)0,(1xxxnCxunn0sin)0,(1nnxlnlanDtxu0nD100d10sin1000)10(102xxnxxCn13310)12(sin)12(10cos)12(54nxntnnu100d10sin)10(50
11、001xxnxx)cos1(5233nn为奇数,为偶数,nnn33540100,0)0,(,1000)10()0,(0,0),10(),0(0,100,1022422xtxuxxxuttututxxutu数学物理方程与特殊函数数学物理方程与特殊函数第第2 2章分离变量法章分离变量法弦的振动振幅放大100倍,红色、蓝色、绿色分别为n=1,2,3时的驻波。数学物理方程与特殊函数数学物理方程与特殊函数第第2 2章分离变量法章分离变量法)()(),(tTxXtxu2XTa X T21XTXaT0 XX20Ta T0)()0(),0(tTXtu0,010(0)0,()0XXxXX l0)0(X(,)()
12、()0u l tX l T tx()0X l222222,0,0(,)(0,)0,0,0(,0)(,0)2,0,0uuaxl ttxu l tuttxu xu xxlxxlt解:例2求下列定解问题数学物理方程与特殊函数数学物理方程与特殊函数第第2 2章分离变量法章分离变量法0,0(0)0,()0XXxlXX l20 02 XX(0)0()0llXABX lA eB e0 BA0)(xXxxBeAexX)(0BAxxX)(0 BA0)(xX0 X20(0)0()cos0XAX lBl(21)/2,1,2,3,nnln222(21)/4nnl(21)()sin2nnnXxBxlxBxAxXsinc
13、os)(02 XX数学物理方程与特殊函数数学物理方程与特殊函数第第2 2章分离变量法章分离变量法222(21)/4nnl(21)()sin2nnnXxBxl20Ta T2222(21)04nnnaTTl(21)(21)cossin1,2,3,22nnnnanaTCtDtnll11(21)(21)(21)(cossin)sin222nnnnnnananuuCtDtxlllnnnTXu(21)(21)(21)(cossin)sin222nnnananCtDtxlll222222,0,0(,)(0,)0,0,0(,0)(,0)2,0,0uuaxl ttxu l tuttxu xu xxlxxlt0
14、XX20Ta T数学物理方程与特殊函数数学物理方程与特殊函数第第2 2章分离变量法章分离变量法1(21)(21)(21)(cossin)sin222nnnnananuCtDtxlll21(21)(,0)sin22nnnu xCxxlxl1(,0)(21)(21)sin022nnu xnanDxtll0nD202(21)(2)sind2lnnCxlxx xll2331321(21)(21)cossin(21)22nlnanutxnll 23332(21)ln 2(,0)(,0)2,0u xu xxlxt初始条件数学物理方程与特殊函数数学物理方程与特殊函数第第2 2章分离变量法章分离变量法2222
15、22,0,0(,)(0,)0,0,0(,0)(,0)2,0,0uuaxl ttxu l tuttxu xu xxlxxlt2331321(21)(21)cossin(21)22nlnanutxnll 若l=1,a=10时的震动。数学物理方程与特殊函数数学物理方程与特殊函数第第2 2章分离变量法章分离变量法)()(),(tTxXtxuTXTX TTXX 0 XX0 TT0)()1(),1(0)()0(),0(tTXtutTXtu0)1(,0)0(XX 0)1(,0)0(10,0XXxXX10,0)0,(,sin)0,(0,0),1(),0(0,10,2222xtxuxxuttututxxutu例
16、3 求下列定解问题解:数学物理方程与特殊函数数学物理方程与特殊函数第第2 2章分离变量法章分离变量法 0)1(,0)0(10,0XXxXX0202 XX(0)0(1)0XABXAeBe0 BA0)(xXxxBeAexX)(0BAxxX)(0 BA0)(xX0 X02xBxAxXsincos)(0sin)1(,0)0(BXAX,3,2,1,nnn22nnxnBxXnnsin)(02 XX10,0)0,(,sin)0,(0,0),1(),0(0,10,2222xtxuxxuttututxxutu数学物理方程与特殊函数数学物理方程与特殊函数第第2 2章分离变量法章分离变量法,3,2,1,22nnnx
17、nBxXnnsin)(0 TT022 nnTnTtnDtnCTnnnsincos11sin)sincos(nnnnnxntnDtnCuunnnTXu)sincos(sintnDtnCxnBnnnxntnDtnCnnsin)sincos(xxnCxunnsinsin)0,(10sin)0,(1nnxnnDtxu0nD1011nnCn,xtusincos10,0)0,(,sin)0,(0,0),1(),0(0,10,2222xtxuxxuttututxxutu数学物理方程与特殊函数数学物理方程与特殊函数第第2 2章分离变量法章分离变量法10,0)0,(,sin)0,(0,0),1(),0(0,10
18、,2222xtxuxxuttututxxutuxtusincos数学物理方程与特殊函数数学物理方程与特殊函数第第2 2章分离变量法章分离变量法lxtxuxxuttlhuxtlututlxxuatu0,0)0,(),()0,(0,0),(),(,0),0(,0,0,22222)()(),(tTxXtxuTXaTX 2TTaXX 210 XX02 TaT0)()0(),0(tTXtu0)()(,0)0(lhXlXX 0)()(,0)0(0,0lhXlXXlxXX0)()()()()()()(),(),(tTlhXlXtTlhXtTlXtlhuxtlu例4 求下列定解问题令带入方程:解:数学物理方程
19、与特殊函数数学物理方程与特殊函数第第2 2章分离变量法章分离变量法 0)()(,0)0(0,0lhXlXXlxXX02xxBeAexX)(0)()(0)0(llllBhehAeeBeAlhXlXBAX0 BA0)(xX02 XX0BAxxX)(0)()(hAlAlhXlX0A0)(xX0 X0)0(BX02xBxAxXsincos)(0sincos)()(,0)0(lBhlBlhXlXAXhl/tan,3,2,1,nn2nnxBxXnnnsin)(02 XX数学物理方程与特殊函数数学物理方程与特殊函数第第2 2章分离变量法章分离变量法lxtxuxxuttlhuxtlututlxxuatu0,0
20、)0,(),()0,(0,0),(),(,0),0(,0,0,22222,3,2,1,n2nnxBxXnnnsin)(02 TaT022 nnnTaTatDatCTnnnnnsincosnnnTXu 11sinsincosnnnnnnnnxatDatCuuatDatCxBnnnnnnsincossinxatDatCnnnnnsinsincos0 XX02 TaT数学物理方程与特殊函数数学物理方程与特殊函数第第2 2章分离变量法章分离变量法lxtxuxxuttlhuxtlututlxxuatu0,0)0,(),()0,(0,0),(),(,0),0(,0,0,222221sinsincosnnn
21、nnnxatDatCu0sin)0,(1xaDtxunnnn0nD)(sin)0,(1xxCxunnnlmmlmxxxxxC020dsindsin)(1sincosnnnnxatCuxxxxxxClmlmnnndsin)(dsinsin001 lmmxxC02dsin数学物理方程与特殊函数数学物理方程与特殊函数第第2 2章分离变量法章分离变量法nmnmxxxnlm00dsinsin0nmnmnmnmll)sin()sin(21nmnmnmnmnmnmllllllsincoscossinsincoscossin21llllnmnnmmnmnmcossinsincos)(1mmnnnmnmnmnm
22、lllltantancoscos1)(10 xxxlnmnmd)cos()cos(210hl/tan数学物理方程与特殊函数数学物理方程与特殊函数第第2 2章分离变量法章分离变量法二 有限长杆上的热传导222,0,0,(,)(0,)0,(,)0,0(,0)()0uuaxl ttxu l tuthu l ttxu xxxl)()(),(tTxXtxu2XTa X T 21XTXaT0 XX20Ta T0)()0(),0(tTXtu0)()(,0)0(lhXlXX0)()()()()()()(),(),(tTlhXlXtTlhXtTlXtlhuxtlu令带入方程:解:数学物理方程与特殊函数数学物理方
23、程与特殊函数第第2 2章分离变量法章分离变量法 0)()(,0)0(0,0lhXlXXlxXX02xxBeAexX)(0)()(0)0(llllBhehAeeBeAlhXlXBAX0 BA0)(xX02 XX0BAxxX)(0)()(hAlAlhXlX0A0)(xX0 X0)0(BX02xBxAxXsincos)(0)0()()cossin0XAX lhX lBlBhlhl/tan,3,2,1,nn2nnxBxXnnnsin)(02 XX数学物理方程与特殊函数数学物理方程与特殊函数第第2 2章分离变量法章分离变量法,3,2,1,n2nnxBxXnnnsin)(20Ta T220nnnTa T2
24、2na tnnTC ennnTXu 2211sinna tnnnnnuuC ex22sinna tnnnC B ex22sinna tnnC ex222,0,0,(,)(0,)0,(,)0,0(,0)()0uuaxl ttxu l tuthu l ttxu xxxl数学物理方程与特殊函数数学物理方程与特殊函数第第2 2章分离变量法章分离变量法00sinsind0lmnmnxx xmn20sindlnnxxL令)(sin)0,(1xxCxunnnlmmlmxxxxxC020dsindsin)(1sincosnnnnxatCuxxxxxxClmlmnnndsin)(dsinsin001 lmmxx
25、C02dsin221sinna tnnnuC ex222,0,0,(,)(0,)0,(,)0,0(,0)()0uuaxl ttxu l tuthu l ttxu xxxlhl/tan数学物理方程与特殊函数数学物理方程与特殊函数第第2 2章分离变量法章分离变量法lxxxuttlututlxxuatu0),()0,(0,0),(,0),0(0,0,222)()(),(tTxXtxuXTaXT 2002 TaTXX 0)(,0)0(00lXXlxXXXXTaT 20)()(),(0)()0(),0(tTlXtlutTXtu0)(,0)0(lXX令带入方程:令例5 求下列定解问题解:数学物理方程与特殊
展开阅读全文