10.2排列与组合参考模板范本.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《10.2排列与组合参考模板范本.doc》由用户(林田)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 10.2 排列 组合 参考 模板 范本
- 资源描述:
-
1、10.2排列与组合1排列(1)排列的定义:从n个不同元素中取出m (mn)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列(2)排列数的定义:从n个不同元素中取出m(mn)个元素的所有不同排列的个数叫做从n个不同元素中取出m个元素的排列数,用A表示(3)排列数公式:An(n1)(n2)(nm1)(4)全排列:n个不同元素全部取出的一个排列,叫做n个元素的一个全排列,An(n1)(n2)21n!.排列数公式写成阶乘的形式为A,这里规定0!1.2组合(1)组合的定义:从n个不同元素中取出m(mn)个元素合成一组,叫做从n个不同元素中取出m个元素的一个组合(2)组合数的定义
2、:从n个不同元素中取出m(mn)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数,用C表示(3)组合数的计算公式:C,由于0!1,所以C1.(4)组合数的性质:CC_;CC_C_.1判断下面结论是否正确(请在括号中打“”或“”)(1)所有元素完全相同的两个排列为相同排列()(2)一个组合中取出的元素讲究元素的先后顺序()(3)两个组合相同的充要条件是其中的元素完全相同()(4)(n1)!n!nn!.()(5)AnA.()(6)kCnC.()2某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有()A4种 B10种 C18种
3、 D20种答案B解析方法一不同的赠送方法有10(种)方法二从2本同样的画册,3本同样的集邮册中取出4本有两种取法:第一种:从2本画册中取出1本,将3本集邮册全部取出;第二种:将2本画册全部取出,从3本集邮册中取出2本由于画册是相同的,集邮册也是相同的,因此第一种取法中只需从4位朋友中选出1人赠送画册,其余的赠送集邮册,有C4(种)赠送方法;第二种取法中只需从4位朋友中选取2人赠送画册,其余的赠送集邮册,有C6(种)赠送方法因此共有4610(种)赠送方法3(2012大纲全国)将字母a,a,b,b,c,c排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有()A12种
4、B18种 C24种 D36种答案A解析先排第一列,因为每列的字母互不相同,因此共有A种不同的排法再排第二列,其中第二列第一行的字母共有A种不同的排法,第二列第二、三行的字母只有1种排法因此共有AA112(种)不同的排列方法4用数字1、2、3、4、5组成的无重复数字的四位偶数的个数为()A8 B24 C48 D120答案C解析分两步:(1)先排个位有A种排法(2)再排前三位有A种排法,故共有AA48种排法5某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案有_种答案14解析有1名女生:CC8.有2名女生:CC6.不同的选派方案有8614(种).题型
5、一排列问题例1有4名男生、5名女生,全体排成一行,问下列情形各有多少种不同的排法?(1)甲不在中间也不在两端;(2)甲、乙两人必须排在两端;(3)男女相间思维启迪这是一个排列问题,一般情况下,我们会从受到限制的特殊元素开始考虑,有时也从特殊的位置讨论起对于相邻问题,常用“捆绑法”;对于不相邻问题,常用“插空法”(特殊元素后考虑);对于“在”与“不在”的问题,常常使用“直接法”或“排除法”(特殊元素先考虑)解(1)方法一(元素分析法)先排甲有6种,其余有A种,故共有6A241 920(种)排法方法二(位置分析法)中间和两端有A种排法,包括甲在内的其余6人有A种排法,故共有AA336720241
6、920(种)排法方法三(等机会法)9个人的全排列数有A种,甲排在每一个位置的机会都是均等的,依题意,甲不在中间及两端的排法总数是A241 920(种)方法四(间接法)A3A6A241 920(种)(2)先排甲、乙,再排其余7人,共有AA10 080(种)排法(3)(插空法)先排4名男生有A种方法,再将5名女生插空,有A种方法,故共有AA2 880(种)排法思维升华本题集排列多种类型于一题,充分体现了元素分析法(优先考虑特殊元素)、位置分析法(优先考虑特殊位置)、直接法、间接法(排除法)、等机会法、插空法等常见的解题思路用0,1,3,5,7五个数字,可以组成多少个没有重复数字且5不在十位位置上的
7、五位数?解本题可分两类:第一类:0在十位位置上,这时,5不在十位位置上,所以五位数的个数为A24;第二类:0不在十位位置上,这时,由于5不能排在十位位置上,所以,十位位置上只能排1,3,7之一,这一步有A3种方法又由于0不能排在万位位置上,所以万位位置上只能排5或1,3,7被选作十位上的数字后余下的两个数字之一,这一步有方法A3(种)十位、万位上的数字选定后,其余三个数字全排列即可,这一步有方法A6(种)根据分步乘法计数原理,第二类中所求五位数的个数为AAA54.由分类加法计数原理,符合条件的五位数共有245478(个)题型二组合问题例2某市工商局对35种商品进行抽样检查,已知其中有15种假货
8、现从35种商品中选取3种(1)其中某一种假货必须在内,不同的取法有多少种?(2)其中某一种假货不能在内,不同的取法有多少种?(3)恰有2种假货在内,不同的取法有多少种?(4)至少有2种假货在内,不同的取法有多少种?(5)至多有2种假货在内,不同的取法有多少种?思维启迪可以从特殊元素出发,考虑直接选取或使用间接法解(1)从余下的34种商品中,选取2种有C561(种),某一种假货必须在内的不同取法有561种(2)从34种可选商品中,选取3种,有C种或者CCC5 984(种)某一种假货不能在内的不同取法有5 984种(3)从20种真货中选取1件,从15种假货中选取2件有CC2 100(种)恰有2种假
9、货在内的不同的取法有2 100种(4)选取2件假货有CC种,选取3件假货有C种,共有选取方式CCC2 1004552 555(种)至少有2种假货在内的不同的取法有2 555种(5)选取3件的总数有C,因此共有选取方式CC6 5454556 090(种)至多有2种假货在内的不同的取法有6 090种思维升华组合问题常有以下两类题型变化:(1)“含有”或“不含有”某些元素的组合题型:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取(2)“至少”或“最多”含有几个元素的组合题型:解这类题必须十分重视“至少”与“最多”这两个关键词的含义,谨防重复与漏解用
10、直接法和间接法都可以求解,通常用直接法分类复杂时,考虑逆向思维,用间接法处理甲、乙两人从4门课程中各选修2门,求:(1)甲、乙所选的课程中恰有1门相同的选法有多少种?(2)甲、乙所选的课程中至少有一门不相同的选法有多少种?解(1)甲、乙两人从4门课程中各选修2门,且甲、乙所选课程中恰有1门相同的选法种数共有CCC24(种)(2)甲、乙两人从4门课程中各选两门不同的选法种数为CC,又甲乙两人所选的两门课程都相同的选法种数为C种,因此满足条件的不同选法种数为CCC30(种)题型三排列与组合的综合应用问题例34个不同的球,4个不同的盒子,把球全部放入盒内(1)恰有1个盒不放球,共有几种放法?(2)恰
11、有1个盒内有2个球,共有几种放法?(3)恰有2个盒不放球,共有几种放法?思维启迪把不放球的盒子先拿走,再放球到余下的盒子中并且不空解(1)为保证“恰有1个盒不放球”,先从4个盒子中任意取出去一个,问题转化为“4个球,3个盒子,每个盒子都要放入球,共有几种放法?”即把4个球分成2,1,1的三组,然后再从3个盒子中选1个放2个球,其余2个球放在另外2个盒子内,由分步乘法计数原理,共有CCCA144(种)(2)“恰有1个盒内有2个球”,即另外3个盒子放2个球,每个盒子至多放1个球,也即另外3个盒子中恰有一个空盒,因此,“恰有1个盒内有2个球”与“恰有1个盒不放球”是同一件事,所以共有144种放法(3
12、)确定2个空盒有C种方法4个球放进2个盒子可分成(3,1)、(2,2)两类,第一类有序不均匀分组有CCA种方法;第二类有序均匀分组有A种方法故共有C(CCAA)84(种)思维升华排列、组合综合题目,一般是将符合要求的元素取出(组合)或进行分组,再对取出的元素或分好的组进行排列其中分组时,要注意“平均分组”与“不平均分组”的差异及分类的标准(1)将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的放法共有()A12种 B18种 C36种 D54种(2)(2013重庆)从3名骨科、4名脑外科和5名内科医生中选派5人组成一个抗震救
展开阅读全文