1.1基础数列类型参考模板范本.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《1.1基础数列类型参考模板范本.doc》由用户(林田)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 1.1 基础 数列 类型 参考 模板 范本
- 资源描述:
-
1、1.1基础数列类型常数数列 如7,7,7,7,7,7,7,7,等差数列 如11,14,17,20,23,26,等比数列 如16,24,36,54,81,周期数列 如2,5,3,2,5,3,2,5,3,对称数列 如2,5,3,0,3,5,2,质数数列 如2,3,5,7,11,13,17合数数列 如4,6,8,9,10,12,14注意:1既不是质数也不是合数1.2 200以内质数表2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149
2、,151,157,163,167,173,179,181,191,193,197,1991.3 整除判定能被2整除的数,其末尾数字是2的倍数(即偶数)能被3整除的数,各位数字之和是3的倍数能被5整除的数,其末尾数字是5的倍数(即5、0)能被4整除的数,其末两位数字是4的倍数能被8整除的数,期末三位数字是8的倍数能被9整除的数,各位数字之和是9的倍数能被25整除的数,其末两位数字是25的倍数能被125整除的数,其末三位数字125的倍数1.4 经典分解91=713 111=337 119=717133=719 117=913 143=1113147=721 153=917 161=723171=9
3、19 187=1117 209=19111.5常用平方数 数字 平方1124394165256367498649811010011121121441316914196152251625617289183241936120400214412248423529245762562526676277292878429841309001.6常用立方数数字立方1128327464512562167343851297291010001.7 典型幂次数 底数指数234561234562491625363827641252164168125662512965322431024664729712882569512
4、1010241.8常用阶乘数数字阶乘1122364245120672075040840320936288010362880002.1 浓度问题1.混合后溶液的浓度,应介于混合前的两种溶液浓度之间。2.浓度=溶质溶液2.2 代入排除法1 奇数+奇数=偶数奇数-奇数=偶数偶数+偶数=偶数偶数-偶数=偶数奇数+偶数=奇数奇数-偶数=奇数2.任意两个数的和如果是奇数,那么差也是奇数;如果和是偶数,那么差也是偶数。任意两个数的和或差是奇数,则两数奇偶相反;和或差事偶数,则两数奇偶相同。3.余数特性一个数被2除得的余数,就是其末一位数字被2除得的余数一个数被5除得的余数,就是其末一位数字被5除得的余数一个
5、数被4除得的余数,就是其末两位数字被4除得的余数一个数被8除得的余数,就是其末三位数字被8除得的余数一个数被25除得的余数,就是其末两位数字被25除得的余数一个数被125除得的余数,就是其末三位数字被125除得的余数一个数被3除得的余数,就是其各位数字相加后被3除得的余数一个数被9除得的余数,就是其个位数字相加后被9除得的余数2.3 计算问题1.平方差2.完全平方和3.完全平方差4.立方和5.立方差6.完全立方和7.完全立方差8.等比数列求和 (q1)9.循环数198198198=19810010012134213421342134=21341000100010001检查:规律:有多少个循环数
6、,就有多少个1,1之间0的个数是循环数位数-1例如2134213421342134,中有“2134”四个,所以应该有4个1,同时2134为四位数,所以两个1之间应该有三个0,所以为10010001000110.乘方尾数口诀底数留个位,指数除以4留余数(余数为0,则看做4)例如19991998的末尾数字为:底数留个位,所以底数为9;指数除以4留余数,1998除以4的余数为2,所以最后为92=81,因此末尾数字为111.韦达定理其中x1和x2是这个方程的两个根,则:x1+x2=x1x2=逆推理:如果 a+b=m ab=n则a、b是的两个根。5.4 行程问题1.路程=速度时间2.相向运动:速度取和;
7、同向运动:速读取差3促进运动:速读取和;阻碍运动,速度取差5.5 工程问题工作总量=工作效率工作时间5.6 几何问题1.常用周长公式:正方形周长长方形周长圆形周长2.常用面积公式正方形面积长方形面积圆形面积三角形面积平行四边形面积梯形面积扇形面积3.常用表面积公式正方体表面积长方体表面积球表面积圆柱体表面积4.常用体积公式正方体体积长方体体积球的体积圆柱体体积圆锥体体积5.几何图形放缩性质若将一个图形扩大至原来的N倍,则:对应角度仍为原来的1倍;对应长度变为原来的N倍;面积变为原来的N2倍;体积变为原来的N3倍。6.几何最值理论1平面图形中,若周长一定,越接近于圆,面积越大。2平面图形中,若面
展开阅读全文