细胞生物学第四版课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《细胞生物学第四版课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 细胞生物学 第四 课件
- 资源描述:
-
1、细胞生物学教学课件细胞生物学教学课件第一章第一章第七章第七章第一章第一章 绪论绪论第一节第一节 细胞生物学研究的内容与现细胞生物学研究的内容与现状状第二节第二节 细胞学与细胞生物学发展简史细胞学与细胞生物学发展简史第一节第一节 细胞生物学研究的内容与现细胞生物学研究的内容与现状状一、现代生命科学中的一门重要的基础前沿学科一、现代生命科学中的一门重要的基础前沿学科二、细胞生物学的主要研究内容二、细胞生物学的主要研究内容细胞重大生命活动及其关系示意图(图1-1)第二节第二节 细胞学与细胞生物学发展简细胞学与细胞生物学发展简史史一、细胞的发现一、细胞的发现二、细胞学的建立及其意义二、细胞学的建立及其
2、意义三、细胞学的经典时期三、细胞学的经典时期四、实验细胞学与细胞学的分支及其发展四、实验细胞学与细胞学的分支及其发展五、细胞生物学学科的形成与发展五、细胞生物学学科的形成与发展重要概念与学说重要概念与学说 原生质体原生质体 (protoplast protoplast):):去掉细胞壁的植物细胞或其他去壁细胞。细胞学说(细胞学说(cell theory):):生物科学的重要学说之一,包括三个基本内容:所有生命体均由单个或多个细胞组成;细胞是生命的结构基础和功能单位;细胞只能由原有细胞分裂产生。本章概要本章概要 细胞生物学是研究细胞生命活动基本规律的学科,它是现代生命科学的基础学科之一。细胞生物
3、学研究的主要方面包括:生物膜与细胞器;细胞信号转导;细胞骨架体系;细胞核、染色体及基因表达;细胞增殖及其调控;细胞分化及干细胞;细胞死亡;细胞衰老;细胞工程;细胞的起源与进化。本章回顾了细胞学与细胞生物学发展的简史,阐述了细胞学说的建立及其重要意义,分析了细胞生物学学科形成的基础与条件。细胞学与细胞生物学发展的历史大致可以划分为以下几个阶段:细胞的发现;细胞学说的建立;细胞学的经典时期;实验细胞学时期;细胞生物学学科的形成与发展。当今的细胞生物学是以细胞作为生命活动的基本单位这一概念为出发点,在各层次上探索生命现象的最基本、最核心问题的一门重要的学科。第二章第二章 细胞的统一性与多样性细胞的统
4、一性与多样性第一节第一节 细胞的基本特征细胞的基本特征第二节第二节 原核细胞与古核细胞原核细胞与古核细胞第三节第三节 真核细胞真核细胞第四节第四节 病毒病毒非细胞形态的生命体非细胞形态的生命体第一节第一节 细胞的基本特征细胞的基本特征一、细胞是生命活动的基本单位一、细胞是生命活动的基本单位二、细胞的基本共性二、细胞的基本共性人体由200多种不同的细胞组成(图2-1)第二节第二节 原核细胞与古核细胞原核细胞与古核细胞一、原核细胞一、原核细胞二、支原体二、支原体最小最简单的细胞最小最简单的细胞三、细菌和蓝藻三、细菌和蓝藻原核细胞的两个代表类群原核细胞的两个代表类群四、古核细胞(古细菌)四、古核细胞
5、(古细菌)生物界的基本类群(图2-2)支原体(A)及其模式图(B)(图2-3)细菌的结构(图2-4)革兰氏阳性菌(A)与革兰氏阴性菌(B)的细胞壁(图2-5)细菌的复制、转录和翻译同时进行(图2-6)蓝藻(图2-7)古细菌的细胞膜脂(图2-8)第三节第三节 真核细胞真核细胞一、真核细胞的基本结构体系一、真核细胞的基本结构体系二、细胞的大小及其影响因素二、细胞的大小及其影响因素三、原核细胞与真核细胞的比较三、原核细胞与真核细胞的比较四、植物细胞与动物细胞的比较四、植物细胞与动物细胞的比较细胞的大小及其调控(图2-9)原核细胞与真核细胞基本特征的比较(表2-1)定殖于小鼠回肠末端的分节丝状菌(图2
6、-10)动物细胞(A)和植物细胞(B)模式图(图2-11)第四节第四节 病毒病毒非细胞形态的生命非细胞形态的生命体体一、病毒的基本知识一、病毒的基本知识二、病毒在细胞内增二、病毒在细胞内增三、病毒与细胞在起源于进化中的关系三、病毒与细胞在起源于进化中的关系牛传染性鼻气管炎病毒的超微结构(图2-12)类病毒的电镜照片(图2-13)病毒的基本类型(图2-14)病毒结构的示意图(图2-15)戊型肝炎病毒的冷冻电镜图片(图2-16)在细胞核内增殖的腺病毒(图2-17)病毒在细胞中的增殖过程(图2-18)电镜超微切片下的山羊痘病毒(图2-19)病毒的核酸类型及其代表科(表2-2)本章概要(一)本章概要(
7、一)细胞是一切生命活动的基本单位,包括以下几个方面的涵义:(1)一切有机体都由细胞构成,细胞是构成有机体的形态结构单位。构成多细胞生物体的细胞虽然是“社会化”的细胞,但它们又保持着形态结构的独立性,每一个细胞具有自己完整的结构体系。(2)细胞是有机体代谢与执行功能的基本单位,在细胞内的一切生化过程与试管内的生化过程的根本不同点,是细胞有严格自动控制的代谢体系,并且有保证完成生命过程有序性的独立的结构装置。(3)有机体的生长与发育是依靠细胞增殖、分化与凋亡来实现的。细胞是研究有机体生长与发育的基础。(4)细胞是遗传的基本单位,每一个细胞都具有遗传的全能性(除少数特化细胞)。构成各种生物机体的细胞
8、的种类繁多,结构与功能各异,但它们都具有基本共性:细胞膜,两种核酸(DNA与RNA),蛋白质合成的机器核糖体与一分为二的增殖方式,这些是细胞结构与生存不可缺少的基础。种类繁多的细胞可以分为原核细胞与真核细胞两大类。近年认为原核细胞并不是统一的一大类,建议将细胞划分为原核细胞、古核细胞与真核细胞三大类。支原体是迄今发现的最小最简单的细胞,它已具备细胞的基本结构,并且有作为生命活动基本单位存在的主要特征。作为比支原体更小更简单的细胞,又要维持细胞生命活动的基本要求,似乎不大可能。本章概要(二)本章概要(二)细菌与蓝藻是原核细胞的两个重要代表。原核细胞的共同特征:没有核膜、遗传信息载体仅仅是一个裸露
9、的环状DNA分子,除核糖体与细胞质膜及其特化结构外,几乎不存在其他复杂的细胞器。将原核细胞与真核细胞进行比较,从进化与动态的观点分析,主要有两个基本差异:一是以生物膜系统的分化与演变为基础,真核细胞形成了复杂的内膜系统,构建成各种具有独立功能的细胞器,双层核膜将细胞分隔为细胞核与细胞质两个基本部分;二是遗传结构装置的扩增与基因表达方式的相应变化。由于上述的根本差异,真核细胞的体积也相应增大,内部结构更趋复杂化,生命活动的时间与空间的布局更为严格,细胞内部出现精密的网架结构细胞骨架。古核细胞在形态结构、遗传装置虽与原核细胞相似,但一些基本分子生物学特点又与真核细胞接近。真核细胞的结构可以概括为三
10、大体系:(1)生物膜体系以及以生物膜为基础构建的各种独立的细胞器;(2)遗传信息表达的结构体系;(3)细胞骨架体系。此外,细胞体积的守恒规律及其制约因素的分析,细胞的形态结构和功能的相关性与一致性,动植物细胞的差异等均是真核细胞知识的重要组成部分。病毒是非细胞形态的生命体,但所有的病毒,必须在细胞内才能表现它们的基本生命活动复制与增殖。病毒是最小、最简单的生命体,主要是由一个核酸分子(DNA或RNA)与蛋白质构成的复合结构,类病毒仅由一条有感染性的RNA构成。病毒在细胞内的复制(增殖)过程大致可分为:侵染、脱衣壳、早基因复制与表达、晚基因复制、结构蛋白合成、装配与释放等过程。第三章第三章 细胞
11、生物学研究方法细胞生物学研究方法第一节第一节 细胞形态结构的观察方法细胞形态结构的观察方法第二节第二节 细胞及其组分的分析方法细胞及其组分的分析方法第三节第三节 细胞培养与细胞工程细胞培养与细胞工程第四节第四节 细胞及生物大分子的动态变化细胞及生物大分子的动态变化第五节第五节 模式生物与功能基因组的研究模式生物与功能基因组的研究第一节第一节 细胞形态结构的观察方法细胞形态结构的观察方法一、光学显微镜一、光学显微镜二、电子显微镜二、电子显微镜三、扫描隧道显微镜三、扫描隧道显微镜几种显微镜可观察的样品大小(箭头之间的范围)及其分辨能力(右侧箭头所指位置)(图3-1)分辨率:能区分开两个质点间的最小
12、距离 眼睛、光学显微镜和电子显微镜的分辨率分别为:0.2mm、0.2m和0.2nm一、光学显微镜一、光学显微镜(一)、普通复式光学显微镜(二)、相差显微镜和微分干涉显微镜(三)、荧光显微镜(四)、激光扫描共焦显微镜(一)、普通复式光学显微镜普通光学显微镜成像示意图(图3-2)决定光学显微镜的分辨率的要素(图3-3)D 0.61 N sin(/2)D:分辨率:入射光的波长 N:介质的折射率(1或1.5):物镜的镜口角石蜡切片的制备程序(图3-4)(二)、相差显微镜和微分干涉显微镜 相差显微镜:一种将相位差转变成振幅差(明暗差)的显微镜,可观察不染色的活细胞。微分干涉显微镜:一种将样品厚度上的微小
13、区别转化成明暗区别相差显微镜。两束光波之间的相互干涉(图3-5)A:相位相同时B:相位相反时两种不同类型的光学显微镜所拍摄的图像比较(图3-6)体外培养的MDCK细胞的图像 A:普通显微镜所拍 B:相差显微镜所拍(三)、荧光显微镜 由于荧光显微镜的暗视野为荧光信号提供了强反差背景,非常微弱的荧光信号亦可得以分辨。荧光显微镜的基本原理及其应用(图3-7)A:基本原理 B:不同荧光素所需激发波长与所产生的荧光波长比较 C:在有丝分裂中期中(四)、激光扫描共焦显微镜 激光扫描共焦显微镜:用聚焦极好的激光束对样品单一景深的层面进行快速扫描,从而获得“光学切片”效果的显微镜。激光扫描共焦显微镜的原理图(
14、图3-8)荧光显微镜(A)和激光扫描共焦显微镜(B)所观察图像的比较(图3-9)二、电子显微镜二、电子显微镜(一)、电子显微镜的基本知识(一)、电子显微镜的基本知识 1.电子显微镜与光学显微镜的基本区别 2.电子显微镜的分辨本领与有效放大倍数 3.电子显微镜的基本构造(二)、主要电镜制样技术(二)、主要电镜制样技术 1.超薄切片技术 2.负染色技术 3.冷冻蚀刻技术 4.电镜三维重构与低温电镜技术 5.扫描电镜技术(一)、电子显微镜的基本知识(一)、电子显微镜的基本知识1.电子显微镜与光学显微镜的基本区别2.电子显微镜的分辨本领与有效放大倍数3.电子显微镜的基本构造电子显微镜的基本结构(A)和
15、成像原理(B)(图3-10)电子显微镜与普通光学显微镜的基本区别(表3-1)(二)、主要电镜制样技术(二)、主要电镜制样技术1.超薄切片技术:切片厚度一般仅为4050nm2.负染色技术:用重金属盐对电镜样品进行染色的技术,使得重金属盐沉积在样品周围,而样品不被染色,从而衬托出样品的精细结构。3.冷冻蚀刻技术:样品经冷冻断裂后,在真空中短暂暴露,使断裂面上的一层薄冰升华,暴露出蚀刻面,以便在电子显微镜下进行观察。4.电镜三维重构与低温电镜技术5.扫描电镜技术:利用电子在样品表面扫描产生二次电子成像的显微镜。几种固定剂对细胞不同成分的固定效果的比较(表3-2)电镜超薄切片样本制备示意图(图3-11
16、)超薄切片技术显示的动物细胞超微结构(图3-12)家蚕细小病毒负染色电镜照片(病毒直径20nm)(图3-13)冰冻蚀刻技术示意图(图3-14)冷冻断裂复型:样品组织冷冻后,用刀口撞击,使样品沿阻力最小的面断裂(通常在脂双层两小叶之间发生断裂),产生两个断裂面,用金属喷镀获得断裂面的投影复制品,用于电子显微镜分析。电子扫描断层成像技术显示细菌的部分鞭毛及其复杂的基部结构(箭头所指)(图3-15)扫描电镜原理示意图(A),扫描电镜下可清晰地显示原生动物四膜虫表面的纤毛和口器(B)(图3-16)三、扫描隧道显微镜三、扫描隧道显微镜 扫描隧道显微镜:一种利用隧道效应来探测微观世界物质表面形貌的显微镜。
17、第二节第二节 细胞及其组分的分析方法细胞及其组分的分析方法一、用超离心技术分离细胞组分一、用超离心技术分离细胞组分二、细胞成分的细胞化学显示方法二、细胞成分的细胞化学显示方法三、特异蛋白抗原的定位与定性三、特异蛋白抗原的定位与定性四、细胞内特异核酸的定位与定性四、细胞内特异核酸的定位与定性五、定量细胞化学分析与细胞分选技术五、定量细胞化学分析与细胞分选技术一、用超离心技术分离细胞组分一、用超离心技术分离细胞组分用差速离心法分离细胞匀浆中的各种细胞组分(图3-17)用密度梯度离心分离细胞组分示意图(图3-18)二、细胞成分的细胞化学显示方法二、细胞成分的细胞化学显示方法 为了测定蛋白质、核酸、多
18、糖和脂质等细胞组分,通常利用一些显色剂与所检测物质中一些特殊基团特异性结合(反应)的特征,通过显色剂在细胞中的定位及颜色的深浅来判断某种物质在细胞中的分布和相对含量。三、特异蛋白抗原的定位与定性三、特异蛋白抗原的定位与定性(一)、免疫荧光技术(二)、免疫电镜技术直接免疫荧光标记与间接免疫荧光标记技术(图3-19)直接免疫荧光标记技术:利用偶联荧光分子的抗体与细胞或细胞切片进行孵育,使抗体和相应抗原结合,在荧光显微镜下对抗原进行定位的技术。间接免疫荧光标记技术:即不带荧光标记的第一抗体与相应抗原孵育形成复合物后,再用荧光标记的第二抗体识别第一抗体,从而显示抗原所在位置。免疫胶体金电镜原位杂交技术
19、的基本原理与应用(膀胱上皮细胞膜蛋白的分布:箭头所指)(图3-20)四、细胞内特异核酸的定位与定性四、细胞内特异核酸的定位与定性 原位杂交(in situ hybridization):通过单链RNA或DNA探针对细胞或组织中的基因或mRNA进行定位的技术。用原位杂交技术显示Z13基因在受精后1d的斑马鱼胚胎的体节、眼和松果体中的表达(箭头所指)(图3-21)五、定量细胞化学分析与细胞分选技术五、定量细胞化学分析与细胞分选技术 流式细胞术:一种用于核酸、蛋白质、染色体和细胞等的定量、分离和分选的技术。流式细胞仪的工作原理(图3-22)第三节第三节 细胞培养与细胞工程细胞培养与细胞工程一、细胞培
20、养一、细胞培养二、细胞工程二、细胞工程一、细胞培养一、细胞培养(一)、动物细胞培养(二)、植物细胞培养 原代培养:用直接从生物体获得的细胞所进行的培养。传代培养:在体外培养条件下对细胞一代接一代的持续培养。细胞系:来源于动物或植物细胞,能够在体外培养过程中无限增殖的细胞群体。体外培养的细胞(图3-23)A:正在生长分裂的HeLe(宫颈瘤)细胞 B:长满单层的CHO(中国仓鼠卵巢)原代细胞二、细胞工程二、细胞工程(一)、细胞融合与单克隆抗体技术(二)、显微操作技术与动物的克隆 细胞融合:两个细胞通过质膜的接触并相互融合形成一个细胞的过程。融合后的细胞只有一个连续的细胞质膜。单克隆抗体:来自单个细
21、胞克隆所分泌的抗体分子。杂交瘤技术:由一个正常的产生抗体的B淋巴细胞与一个恶性骨髓瘤细胞融合产生的杂种细胞系。具有无限增殖和产生单克隆抗体的特性。细胞拆合:即先把细胞核与细胞质分离开来,然后把不同来源的核体和胞质体相互融合,形成核-质杂交细胞。单克隆抗体制备过程示意图(图3-24)应用显微注射技术进行细胞核移植(图3-25)第四节第四节 细胞及生物大分子的动态变细胞及生物大分子的动态变化化一、荧光漂白恢复技术一、荧光漂白恢复技术二、单分子技术与细胞生命活动的研究二、单分子技术与细胞生命活动的研究三、酵母双杂交技术三、酵母双杂交技术四、荧光共振能量转移技术四、荧光共振能量转移技术五、放射自显影技
22、术五、放射自显影技术一、荧光漂白恢复技术一、荧光漂白恢复技术 荧光漂白恢复技术:一种研究膜组分流动性的技术。通过膜组分与荧光染料连接,用激光不可逆地漂白膜上的某一荧光区域,然后根据漂白区荧光恢复的速度,研究膜的流动性。荧光漂白恢复技术原理示意图(图3-26)二、单分子技术与细胞生命活动的研究二、单分子技术与细胞生命活动的研究 单分子技术:一种在细胞内实时观测单一生物分子运动规律的技术,可在纳米空间尺度和毫秒时间尺度上精确测量单分子的距离、位置、指向、分布、结构以及各种动态过程。利用光镊来研究生物单分子体系(图3-27)三、酵母双杂交技术三、酵母双杂交技术 酵母双杂交技术:酵母双杂交技术:一种利
23、用酵母基因表达系统在体内分析一种利用酵母基因表达系统在体内分析蛋白质蛋白质-蛋白质相互作用的技术。蛋白质相互作用的技术。用于检测蛋白质-蛋白质互作的酵母双杂交技术原理示意图(图3-28)四、荧光共振能量转移技术四、荧光共振能量转移技术 荧光共振能量转移技术:荧光共振能量转移技术:一种用来检测活细胞内两种蛋白一种用来检测活细胞内两种蛋白质分子是否直接相互作用的技术。质分子是否直接相互作用的技术。荧光共振能量转移原理图(图荧光共振能量转移原理图(图3-293-29)五、放射自显影技术五、放射自显影技术 放射自显影技术:放射自显影技术:通过检测放射性标记物质在细胞内的定位来观察某一特定生化反应过程的
24、技术。在含有放射性同位素的组织切片上涂一薄层感光乳胶,乳胶经组织发出的射线曝光、显影,在显微镜下通过观察银颗粒定位,可以获知细胞中有放射性信号的位点。常用放射性同位素的基本特点(表3-3)电镜放射自显影图片(显示RNA合成部位)(图3-30)N:细胞核 Nu:核仁 SG:银颗粒第五节第五节 模式生物与功能基因组的研究模式生物与功能基因组的研究一、细胞生物学研究常用的模式生物一、细胞生物学研究常用的模式生物二、突变体制备技术二、突变体制备技术三、蛋白质组学技术三、蛋白质组学技术一、细胞生物学研究常用的模式生物一、细胞生物学研究常用的模式生物(一)、大肠杆菌(二)、酵母(三)、线虫(四)、果蝇(五
25、)、斑马鱼(六)、小鼠(七)、拟南芥二、突变体制备技术二、突变体制备技术 RNARNA干扰(干扰(RNAiRNAi):):一种把双链小分子(或单链反义)RNA 导入细胞或模式生物体中使某mRNA降解或抑制其翻译活性的技术。基因敲除:基因敲除:一种同源替代技术。RNAi原理的示意图(图3-31)三、蛋白质组学技术三、蛋白质组学技术(一)、双向凝胶电泳(二)、色谱技术(三)、质谱(四)、蛋白质芯片(五)、生物信息学本章概要(一)本章概要(一)细胞生物学的研究不仅涉及多种实验手段,而且较其他生命学科更多地依赖于其研究方法和实验技术。从发现细胞所使用的光学显微镜,到将细胞超微结构呈现在人们面前的电子显
展开阅读全文