沪科版九年级上册数学第21章 小结与复习课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《沪科版九年级上册数学第21章 小结与复习课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 沪科版九年级上册数学第21章 小结与复习课件 沪科版 九年级 上册 数学 21 小结 复习 课件 下载 _九年级上册_沪科版(2024)_数学_初中
- 资源描述:
-
1、小结与复习第21章 二次函数与反比例函数要点梳理考点讲练课堂小结课后作业 九年级数学上(HK)教学课件要点梳理要点梳理 一般地,形如 (a,b,c是常数,_)的函数,叫做二次函数yax2bxca 注意(1)等号右边必须是整式;(2)自变量的最高次数是2;(3)当b0,c0时,yax2是特殊的二次函数1.二次函数的概念二次函数y=a(x-h)2+k yax2bxc开口方向对称轴顶点坐标最值a0a0增减性a0a02.二次函数的图象与性质:a0 开口向上a 0 开口向下x=h(h,k)y最小=ky最大=k在对称轴左边,x y;在对称轴右边,x y 在对称轴左边,x y;在对称轴右边,x y2bxa2
2、4(,)24bacbaay最小=244acbay最大=244acba3.二次函数图像的平移yax22()y a x h左、右平移 左加右减2()ya x hk上、下平移 上加下减y-ax2写成一般形式2yaxbx c沿x轴翻折4.二次函数表达式的求法1一般式法:yax2bxc(a 0)2顶点法:ya(xh)2k(a0)3交点法:ya(xx1)(xx2)(a0)5.二次函数与一元二次方程的关系 二次函数yax2bxc的图象和x轴交点有三种情况:有两个交点,有两个重合的交点,没有交点.当二次函数yax2bxc的图象和x轴有交点时,交点的横坐标就是当y=0时自变量x的值,即一元二次方程ax2bxc=
3、0的根.二次函数yax2bxc的图像和x轴交点一元二次方程ax2bxc=0的根一元二次方程ax2bxc=0根的判别式(b2-4ac)有两个交点有两个交点有两个相异的有两个相异的实数根实数根b2-4ac 0有两个重合有两个重合的交点的交点有两个相等的有两个相等的实数根实数根b2-4ac=0没有交点没有交点没有实数根没有实数根b2-4ac 06.二次函数的应用1二次函数的应用包括以下两个方面 (1)用二次函数表示实际问题变量之间的关系,解决最大化问题(即最值问题);(2)利用二次函数的图像求一元二次方程的近似解2一般步骤:(1)找出问题中的变量和常量以及它们之间 的函数关系;(2)列出函数关系式,
4、并确定自变量的取值范围;(3)利用二次函数的图象及性质解决实际问题;(4)检验结果的合理性,是否符合实际意义7.反比例函数的概念定义:形如_(k为常数,k0)的函数称为反比例函数,其中x是自变量,y是x的函数,k是比例系数三种表达式方法:或 xykx 或ykx1(k0)防错提醒:(1)k0;(2)自变量x0;(3)函数y0.kyxkyx8.反比例函数的图象和性质(1)反比例函数的图象:反比例函数 (k0)的 图象是 ,它既是轴对称图形又是中心 对称图形.反比例函数的两条对称轴为直线 和 ;对称中心是:.双曲线原点kyxy=xy=x(2)反比例函数的性质 图象所在象限性质(k0)k0一、三象限(
5、x,y同号)在每个象限内,y 随 x 的增大而减小k0二、四象限(x,y异号)在每个象限内,y 随 x 的增大而增大kyxxyoxyo(3)反比例函数比例系数 k 的几何意义 k 的几何意义:反比例函数图象上的点(x,y)具有两坐标之积(xyk)为常数这一特点,即过双曲线上任意一点,向两坐标轴作垂线,两条垂线与坐标轴所围成的矩形的面积为常数|k|.规律:过双曲线上任意一点,向两坐标轴作垂线,一条垂线与坐标轴、原点所围成的三角形的面积为常数 2k9.反比例函数的应用 利用待定系数法确定反比例函数:根据两变量之间的反比例关系,设 ;代入图象上一个点的坐标,即 x、y 的一对 对应值,求出 k 的值
6、;写出解析式.kyx 反比例函数与一次函数的图象的交点的求法求直线 yk1xb(k10)和双曲线 (k20)的交点坐标就是解这两个函数解析式组成的方程组.2kyx 利用反比例函数相关知识解决实际问题过程:分析实际情境建立函数模型明确 数学问题注意:实际问题中的两个变量往往都只能取 非负值.考点一 求抛物线的顶点、对称轴、最值考点讲练考点讲练例1 抛物线yx22x3的顶点坐标为_【解析】方法一:配方,得yx22x3(x1)22,则顶点坐标为(1,2)方法二代入公式 ,则顶点坐标为(1,2)2122 1bxa2244 1 3 2244 1ac bya (1,2)解决此类题目可以先把二次函数yax2
7、bxc配方为顶点式ya(xh)2k的形式,得到:对称轴是直线xh,最值为yk,顶点坐标为(h,k);也可以直接利用公式求解.方法归纳1对于y2(x3)22的图像下列叙述正确的是()A顶点坐标为(3,2)B对称轴为y3C当x3时,y随x的增大而增大 D当x3时,y随x的增大而减小C针对训练考点二 二次函数的图像与性质及函数值的大小比较例2 二次函数yx2bxc的图像如图所示,若点A(x1,y1),B(x2,y2)在此函数图像上,且x1x21,则y1与y2的大小关系是()A.y1y2 By1y2【解析】由图像看出,抛物线开口向下,对称轴是x1,当x1时,y随x的增大而增大x1x21,y11可得2a
8、b0,故正确;由图像上横坐标为 x2的点在第三象限可得4a2bc0,故正确;由图像上横坐标为x1的点在第四象限得出abc0,由图像上横坐标为x1的点在第二象限得出 abc0,则(abc)(abc)0,即(ac)2b20,可得(ac)2b2,故正确故选D.方法总结1.可根据对称轴的位置确定b的符号:b0对称轴是y轴;a、b同号对称轴在y轴左侧;a、b异号对称轴在y轴右侧.这个规律可简记为“左同右异”.2.当x1时,函数yabc.当图像上横坐标x1的点在x轴上方时,abc0;当图像上横坐标x1的点在x轴上时,abc0;当图像上横坐标x1的点在x轴下方时,abc0.同理,可由图像上横坐标x1的点判断
展开阅读全文