理想流体的流动课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《理想流体的流动课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 理想流体 流动 课件
- 资源描述:
-
1、1.3 理想流体的流动精选1、掌握理想流体、定常流动、流线与流管的概念及、掌握理想流体、定常流动、流线与流管的概念及 其物理意义;其物理意义;3、掌握、掌握伯努利方程伯努利方程及其应用;及其应用;2、掌握、掌握连续性原理连续性原理及其应用;及其应用;本节要求本节要求精选1.3.1 1.3.1 理想流体的定常流动理想流体的定常流动流体受压缩程度极小,其相应的密度流体受压缩程度极小,其相应的密度变化可忽略,可看作不可压缩流体。变化可忽略,可看作不可压缩流体。流体在流动时,若能量损耗可忽略不流体在流动时,若能量损耗可忽略不计,可看作非黏滞流体。计,可看作非黏滞流体。绝对不可压缩、完全没有黏滞性的流体
2、绝对不可压缩、完全没有黏滞性的流体一、理想流体精选二、二、流体的流动流体的流动流体流速场的空间分布随时间变化。流体流速场的空间分布随时间变化。“定常流动定常流动”并不仅限于并不仅限于“理想流体理想流体”。1v2v3v(2)定常流动定常流动空间中任一固定点始终具有相同的流速。空间中任一固定点始终具有相同的流速。),(zyxvv t)z,y,v(x,v(1)非定常流动非定常流动精选流线流线:分布在流场中的许多假想曲线,曲线上每一点的切线方:分布在流场中的许多假想曲线,曲线上每一点的切线方 向和该点的速度方向一致。向和该点的速度方向一致。空间每一点仅有一个流速方向,空间每一点仅有一个流速方向,所以流
3、线不会相交。所以流线不会相交。流线密处,表示流速大。流线密处,表示流速大。三、流线三、流线(stream line)四、流管四、流管(flow tube)流管流管:由一组流线围成的管状区域称为流管。:由一组流线围成的管状区域称为流管。通常所取的通常所取的“流管流管”都是都是“细流管细流管”。细流管的截面积细流管的截面积 ,就称为流线。,就称为流线。0 S流速大流速大1v2v作定常流动的液体可以视为由无数稳定的细流管组成,所以,作定常流动的液体可以视为由无数稳定的细流管组成,所以,任一流管中的流动可以代表整个流体的流动。任一流管中的流动可以代表整个流体的流动。流管内、外的流体都不会穿越管壁。流管
4、内、外的流体都不会穿越管壁。精选 两截面处的流速分别为两截面处的流速分别为 和和 ,1v2v 取一细流管,任取两个截面取一细流管,任取两个截面 和和 ,1S2S1.3.2连续性原理(连续性原理(The principle of continuity)描述了描述了定常流动的流体定常流动的流体任一流管中流体元在不同截面处的任一流管中流体元在不同截面处的流流速速 与与截面积截面积 的关系。的关系。vS流体密度为流体密度为 。经过时间经过时间 ,流入细流管的流体质量,流入细流管的流体质量t 111 1mVS vt 同理,流出的质量同理,流出的质量222 2mVS vt 流体作定常流动,故流体作定常流动
5、,故流管内流体质量始终不变流管内流体质量始终不变,即,即21mm 1 12 2S vS vCSv 上式称为上式称为连续性原理连续性原理或或质量守恒方程质量守恒方程,其中,其中 称为称为质量流量。质量流量。Sv S1S2v1v2t物理本质:体现了不可压缩的流体在流动中物理本质:体现了不可压缩的流体在流动中质量守恒质量守恒精选对于不可压缩流体,对于不可压缩流体,为常量,故有为常量,故有CqSvV常量上式称为不可压缩流体的上式称为不可压缩流体的连续性原理连续性原理或或体积连续性方程体积连续性方程,其中其中 称为称为体积流量,简称流量,体积流量,简称流量,。Vq 是对细流管而言的。物理上的是对细流管而
6、言的。物理上的“细细”,指的是截,指的是截面上各处速度一样,不论多大,均可看成面上各处速度一样,不论多大,均可看成“细流管细流管”。CSv 对同一流管而言,对同一流管而言,C 一定。横截面积一定。横截面积 小处则速度大,横截小处则速度大,横截面积面积 大处则速度小。大处则速度小。VSvt 单位:单位:m3/s其物理意义是单位时间内通过横截面积其物理意义是单位时间内通过横截面积S S的液体体积。的液体体积。精选例例求求解解一根粗细不均的长水管,其粗细处的截面积之比为一根粗细不均的长水管,其粗细处的截面积之比为4 1,已知水管粗处水的流速为已知水管粗处水的流速为2ms-1。水管狭细处水的流速水管狭
7、细处水的流速v1v2S1S2由连续性原理知由连续性原理知2211vSvS 得得12112sm8SvSv精选【例例】横截面是横截面是4m4m2 2的水箱,下端装有一的水箱,下端装有一导管,水以导管,水以2m/s2m/s从导管流出,如果导管横从导管流出,如果导管横截面是截面是10cm10cm2 2,那么水箱下降时的速度是,那么水箱下降时的速度是多少?多少?【解解】设设 ,由连由连续性原理有续性原理有 ,代入数据,得,代入数据,得214mS 2210cmS smV/222211VSVSsmv/10541精选精选伯努利人物简介丹尼尔丹尼尔伯努利伯努利(1700178217001782),),数学、物理
8、学、医学家数学、物理学、医学家。他自幼。他自幼兴趣广泛、先后就读于尼塞尔大学、斯特拉斯堡大学和海德堡大学,兴趣广泛、先后就读于尼塞尔大学、斯特拉斯堡大学和海德堡大学,学习学习逻辑逻辑、哲学哲学、医学医学和和数学数学。17241724年,丹尼尔获得有关年,丹尼尔获得有关微积分方微积分方程程的重要成果,从而轰动欧洲科学界。丹尼尔的学术著作非常丰富,的重要成果,从而轰动欧洲科学界。丹尼尔的学术著作非常丰富,他的全部数学和力学著作、论文超过他的全部数学和力学著作、论文超过8080种种17381738年他出版了一生中年他出版了一生中最重要的著作最重要的著作流体动力学流体动力学17251757172517
展开阅读全文