电路原理相量法课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《电路原理相量法课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 电路 原理 相量法 课件
- 资源描述:
-
1、经典法经典法:直流电源、动态电路、时域直流电源、动态电路、时域 响应响应微分方程微分方程相量法相量法:正弦电源正弦电源、动态电路、稳态分析,、动态电路、稳态分析,频域分析法频域分析法代数方程代数方程前言前言1 第六、七章对直流激励下动态电路分析时第六、七章对直流激励下动态电路分析时采用的是经典法,即在时域内列解描述直流激采用的是经典法,即在时域内列解描述直流激励下动态电路的微分方程。第八十一章讨论励下动态电路的微分方程。第八十一章讨论动态电路的正弦稳态分析,即正弦量激励下的动态电路的正弦稳态分析,即正弦量激励下的动态电路分析,采用的是动态电路分析,采用的是频域分析法频域分析法。而。而相量相量法
2、法是频域内线性动态电路正弦稳态分析的一种是频域内线性动态电路正弦稳态分析的一种简便而有效地方法。简便而有效地方法。前言前言2第八章第八章 相量法相量法8.1 8.1 复数复数8.2 8.2 正弦量正弦量8.3 8.3 相量法的基础相量法的基础8.4 8.4 电路定律的相量形式电路定律的相量形式3正弦量的三要素正弦量的三要素重点:重点:相量法相量法电路定律的相量形式电路定律的相量形式元件的元件的VCR关系关系4基本概念基本概念按物理量是否随时间改变,可分为恒定量,变动量。按物理量是否随时间改变,可分为恒定量,变动量。大小和方向都不随时间而改变,用大写字母表示大小和方向都不随时间而改变,用大写字母
3、表示U,I.随时间变化的量随时间变化的量,每个时刻值称为瞬时值每个时刻值称为瞬时值 u(t),i(t)tOi(t)tt0i(t0)O5 大小、方向随时间做周期变化的电流大小、方向随时间做周期变化的电流(电压电压)称为周期电流称为周期电流(电压电压)工程上往往以频率区分电路:工频工程上往往以频率区分电路:工频 50 Hz中频中频 400-2000Hz高频电路高频电路交变电流交变电流:在一个周期内平均值为零的周期电流:在一个周期内平均值为零的周期电流,称为交称为交变电流。即变电流。即tiTtiO TttiT00d)(16桥桥正弦量正弦量复数复数相量相量相量分析法相量分析法 正弦量的表示相量法正弦量
4、的表示相量法以上分析可知,一个复数具有两个要素:模和幅角(实部与虚以上分析可知,一个复数具有两个要素:模和幅角(实部与虚部)部)),(ajaaeAa如如而正弦量而正弦量 具有三要素,那么怎样用复数去表示具有三要素,那么怎样用复数去表示正弦量呢?正弦量呢?)sin(cmtIi71.1.复数的表示形式复数的表示形式)1(j为为虚虚数数单单位位FbReImao|F|bajFeFFj)sin(cos|jbaFj|jFeFFj|eFF 代数式代数式指数式指数式极坐标式极坐标式三角函数式三角函数式8.1 8.1 复数复数8几种表示法的关系:几种表示法的关系:ab baFarctan|22或或sin|cos
5、|F bFa2.2.复数运算复数运算加减运算加减运算 采用代数式采用代数式FbReImao|F|baFj|jFeFF9则则 F1F2=(a1a2)+j(b1b2)若若 F1=a1+jb1,F2=a2+jb2图解法图解法F1F2ReImoF1+F2-F2F1ReImoF1-F2F1+F2F2-F2F1ReImoF210乘除运算乘除运算 采用极坐标式采用极坐标式若若 F1=|F1|1 ,F2=|F2|22121)j(212j2j1221121|211|F|FeFFeFeFFFFF则则:2121)(j21j2j121 2121FFeFFeFeFFF模相乘模相乘角相加角相加模相除模相除角相减角相减11
6、例例1?2510475)226.4 j063.9()657.3 j41.3(原式原式569.0 j47.1261.248.12解解例例2?5 j20j6)(4 j9)(17 35 220 解解2.126j2.180原式原式04.1462.203.56211.79.2724.1916.70728.62.126j2.180329.6 j238.22.126j2.180365.2255.132j5.18212旋转因子旋转因子复数复数 ej=cos+jsin =1F ejFReIm0F ej旋转因子旋转因子13j2sinj2cos ,22jej)2sin(j)2cos(,22je1)sin(j)cos
7、(,je +j,j,-1 都可以看成旋转因子。都可以看成旋转因子。特殊特殊旋转因子旋转因子ReIm0FFjFjF注意148.2 8.2 正弦量正弦量1.1.正弦量正弦量l瞬时值表达式瞬时值表达式i(t)=Imcos(t+y)ti0Tl周期周期T 和频率和频率f频率频率f:每秒重复变化的次数。:每秒重复变化的次数。周期周期T:重复变化一次所需的时间。:重复变化一次所需的时间。单位:赫单位:赫(兹兹)Hz单位:秒单位:秒sTf1正弦量为周期函数正弦量为周期函数 f(t)=f(t+kT)波形波形15l正弦电流电路正弦电流电路 激励和响应均为同频率的正弦量的线性电路激励和响应均为同频率的正弦量的线性电
8、路(正弦稳态电路)称为正弦电路或交流电路。(正弦稳态电路)称为正弦电路或交流电路。1.1.正弦稳态电路在电力系统和电子技术领域正弦稳态电路在电力系统和电子技术领域占有十分重要的地位。占有十分重要的地位。l研究正弦电路的意义研究正弦电路的意义正弦函数是周期函数,其加、减、求导、正弦函数是周期函数,其加、减、求导、积分运算后仍是同频率的正弦函数;积分运算后仍是同频率的正弦函数;正弦信号容易产生、传送和使用。正弦信号容易产生、传送和使用。优点162.2.正弦信号是一种基本信号,任何非正弦周期信正弦信号是一种基本信号,任何非正弦周期信号可以分解为按正弦规律变化的分量。号可以分解为按正弦规律变化的分量。
9、)cos()(kn1kktkAtf 对正弦电路的分析研究具有重要的理对正弦电路的分析研究具有重要的理论价值和实际意义。论价值和实际意义。结论171.幅值幅值(amplitude)(振幅、振幅、最大最大值值)Im:反映正弦量变化幅度:反映正弦量变化幅度的大小。的大小。2.角频率角频率(angular frequency)w:tiOy y/T二二.正弦量的正弦量的三要素三要素:i(t)=Imcos(w t+y)称为正弦量的相位称为正弦量的相位(相角相角)。角频率。角频率是正弦量的相位随是正弦量的相位随时间变化的角速度。即:时间变化的角速度。即:随时间变化的角度随时间变化的角度(w t+y)()dt
10、dty反映相位随时间变化的快慢反映相位随时间变化的快慢。角频率w 周期T频率frad/s ,弧度,弧度/秒秒Hz,赫,赫(兹兹)s,秒,秒2T2f1/fT183.初相位初相位(initial phase angle):在:在t=0时刻的相位,简称初相,时刻的相位,简称初相,反映了正弦量的计时起点。反映了正弦量的计时起点。单位用弧度或度表示,单位用弧度或度表示,。对任一正弦量,初相允对任一正弦量,初相允许任意指定,计时起点不同,许任意指定,计时起点不同,初相位不同。但对于一个电初相位不同。但对于一个电路中的许多相关的正弦量,路中的许多相关的正弦量,它们只能相对于一个共同的它们只能相对于一个共同的
11、计时零点确定各自的相位。计时零点确定各自的相位。正弦量的三要素是正弦量之间进行比较和区分的依据。正弦量的三要素是正弦量之间进行比较和区分的依据。正弦量乘以常数,正弦量的微分、积分,同频正弦量正弦量乘以常数,正弦量的微分、积分,同频正弦量的代数和等运算,其结果仍为一个的代数和等运算,其结果仍为一个同频率同频率的正弦量。的正弦量。21wtiOi1i2i302319例例已知正弦电流波形如图,已知正弦电流波形如图,103rad/s,1.1.写出写出 i(t)表达式;表达式;2.2.求最大值发生的时间求最大值发生的时间t1 1tio10050t1解解)10cos(100)(3yttiycos100500
12、t3y由于最大值发生在计时起点右侧由于最大值发生在计时起点右侧3y)310cos(100)(3tti有有最最大大值值当当 310 13tms047.110331t20三三.相位差相位差(phase difference):两个同频率正弦量相位之差。:两个同频率正弦量相位之差。则则 相位差相位差 ,u 超前超前i,角,或角,或i 滞后滞后 u,角角(u 比比 i 先到达最大值先到达最大值);,i 超前超前 u,角,或角,或u 滞后滞后i,角角(i 比比 u 先到达最先到达最大值大值)。从波形图上看相位差从波形图上看相位差可取变化趋势相同点可取变化趋势相同点来看。来看。tu,iu iO规定:规定:
13、)cos()(umwtutu)cos()(imwtitiiu0021:同相:同相:(180o):反相:反相:特例:特例:tu,iu iO tu,iu iO:正交:正交 tu,iu iO0222例例计算下列两正弦量的相位差。计算下列两正弦量的相位差。)15 100sin(10)()30 100cos(10)()2(0201ttitti)2 100cos(10)()43 100cos(10)()1(21ttitti)45 200cos(10)()30 100cos(10)()3(0201ttuttu)30 100cos(3)()30 100cos(5)()4(0201ttitti解解045)2(4
14、343245000135)105(30)105100cos(10)(02tti不能比较相位差不能比较相位差210000120240)210(30)210100cos(3)(02tti两个正弦量两个正弦量进行相位比进行相位比较时应满足较时应满足同频率、同同频率、同函数、同符函数、同符号,且在主号,且在主值范围比较。值范围比较。结论23 周期性电流、电压的瞬时值随时间而变,为了确切的衡量周期性电流、电压的瞬时值随时间而变,为了确切的衡量其大小工程上采用有效值来量。其大小工程上采用有效值来量。电流有效值电流有效值定义为:定义为:瞬时值的平方在一个周期内积分的平均值再取平方根。瞬时值的平方在一个周期内
15、积分的平均值再取平方根。物理意义:物理意义:周期性电流周期性电流 i 流过电阻流过电阻 R,在一周期,在一周期T 内吸收的内吸收的电能,等于一直流电流电能,等于一直流电流I 流过流过R,在时间在时间T 内吸内吸收的电能,则称电流收的电能,则称电流 I 为周期性电流为周期性电流 i 的有效值。的有效值。有效值也称均方根值有效值也称均方根值(root-mean-square,简记为,简记为 rms。)1.有效值有效值(effective value)定义定义 TttiTI02defd)(1四四.周期性电流、电压的有效值周期性电流、电压的有效值24同样,可定义同样,可定义电压有效值电压有效值:Ttt
16、uTU02defd)(1l周期电流、电压有效值定义周期电流、电压有效值定义R直流直流IR交流交流 ittiRWTd)(20TRIW2物物理理意意义义TttiTI02defd)(1均方根值均方根值252.正弦电流、电压的有效值正弦电流、电压的有效值IIIITITI2 707.0221 mmm2m 22)(2cos1)(cos002TdtwtdtwtTTTmdtwtITI022)(cos1)cos()(wtItim)cos(2)cos()(wtIwtItim26同理,可得正弦电压有效值与最大值的关系:同理,可得正弦电压有效值与最大值的关系:UUUU2 21mm 或或若一交流电压有效值为若一交流电压
17、有效值为U=220V,则其最大值为,则其最大值为Um 311V;U=380V,Um 537V。1、工程上说的正弦电压、电流一般指有效值,如设备、工程上说的正弦电压、电流一般指有效值,如设备铭牌额定值、电网的电压等级等。但绝缘水平、耐压值指铭牌额定值、电网的电压等级等。但绝缘水平、耐压值指的是最大值。因此,在考虑电器设备的耐压水平时应按最的是最大值。因此,在考虑电器设备的耐压水平时应按最大值考虑。大值考虑。2、测量中,电磁式交流电压、电流表读数均为有效值。、测量中,电磁式交流电压、电流表读数均为有效值。3、区分电压、电流的瞬时值、最大值、有效值的符号。、区分电压、电流的瞬时值、最大值、有效值的符
18、号。i(t)Im I,u(t)Um U,注意278.3 8.3 相量法的基础相量法的基础1.1.问题的提出问题的提出电路方程是微分方程:电路方程是微分方程:两个正弦量的相加:如两个正弦量的相加:如KCL、KVL方程运算:方程运算:)(dddd2tuutuRCtuLCCCC)cos(2111ytIi)cos(2222ytIiRLC+-uCiLu+-28i1i1+i2 i3i2角频率角频率 同频的正弦量相加仍得到同频的正弦量,同频的正弦量相加仍得到同频的正弦量,所以,只需确定初相位和有效值。因此采用所以,只需确定初相位和有效值。因此采用正弦量正弦量复数复数I1I2I3有效值有效值 1 2 3初相位
19、初相位变换的思想变换的思想 tu,ii1 i2oi3结论29 在线性电路中,如果激励是正弦量,电路中的各支路在线性电路中,如果激励是正弦量,电路中的各支路电压和支路电流的稳态响应将是同频正弦量;如果电路中电压和支路电流的稳态响应将是同频正弦量;如果电路中有多个激励且为同频率的正弦量,则电路的全部稳态响应有多个激励且为同频率的正弦量,则电路的全部稳态响应都将是都将是同一频率同一频率的正弦量。因此在求解正弦量激励下的电的正弦量。因此在求解正弦量激励下的电路稳态相应时,只需确定响应的路稳态相应时,只需确定响应的最大值最大值(或有效值或有效值)和和初相初相位。而复数向量也是一个大小位。而复数向量也是一
展开阅读全文