书签 分享 收藏 举报 版权申诉 / 19
上传文档赚钱

类型Modelling-of-an-Inductively-Coupled-Plasma-Torch-first-step-电感耦合等离子体炬的第一步建模课件.ppt

  • 上传人(卖家):晟晟文业
  • 文档编号:4199707
  • 上传时间:2022-11-19
  • 格式:PPT
  • 页数:19
  • 大小:595.15KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《Modelling-of-an-Inductively-Coupled-Plasma-Torch-first-step-电感耦合等离子体炬的第一步建模课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    Modelling of an Inductively Coupled Plasma Torch first step 电感 耦合 等离子体 第一步 建模 课件
    资源描述:

    1、Modelling of an Inductively Coupled Plasma Torch:first stepAndr P.1,Clain S.4,Dudeck M.3,Izrar B.2,Rochette D1,Touzani R3,Vacher D.11.LAEPT,Clermont University,France2.ICARE,Orlans University,France3.Institut Jean Le Rond dAlembert,University of Paris 6,France4.LM,Clermont University,FranceCompositi

    2、on in molar fractionMars97%CO2;3%N2Titan97%N2;2%CH4;1%Ar ICP Torch:atmospheric pressureLow flow of gazAssumptionsThermal equlibrium Chemical equilibriumOptical Thin plasmaSimple Case!CompositionSpectral lines,Spectroscopy measurementsTransport CoefficientsModellingThermodynamicPropertiesRadiative lo

    3、ss termInteraction PotentialsCompositionSpectral lines,Spectroscopy measurementsTransport CoefficientsModellingThermodynamicPropertiesRadiative loss termInteraction PotentialsChemical and Thermal equilibrium:Gibbs Free Energy minimisationDalton LawElectrical NeutralityChemical species:MarsMonatomic

    4、species(11):C,C-,C+,C+,N,N+,N+,O,O-,O+,O+Diatomic species(18):C2,C2-,C2+,CN,CN-,CN+,CO,CO-,CO+,N2,N2-,N2+,NO,NO-,NO+,O2,O2-,O2+Poly_atomic species(23):C2N,C2N2,C2O,C3,C3O2,C4,C4N2,C5,CNN,CNO,CO2,CO2-,N2O,N2O3,N2O4,N2O5,N2O+,N3,NCN,NO2,NO2-,NO3,O3 e-,solid phase:graphiteTitan:Monatomic species(13):Ar

    5、,Ar+,Ar+,C,C-,C+,C+,H,H+,H-,N,N+,N+,Diatomic Species(18):C2,C2-,C2+,CN,CN-,CN+,CO,CO-,CO+,N2,N2-,N2+,NO,NO-,NO+,O2,O2-,O2+Poly_atomic species(26):C2H,C2H2,C2H4,C2N,C2N2,C3,C4,C4N2,C5,CH2,CH3,CH4,CHN,CNN,H2N,H2N2,H3N,H4N2,N3,NCN,H3+,NH4+,C2H3,C2H5,C2H6,HCCNe-,solid phase:graphite10-610-410-2100150030

    6、0045006000NCC+e-NCNNHCHC2C2NC2HC2H2HCHNArC(S)H2HN2Temperature(K)Fraction molaire10-610-410-21001500300045006000CNe-NO+CNO2NNOOO2CON2CO2Temperature(K)Fraction molaireTo calculate in gas phase,we consider the temperature range 3000;15000MarsTitan10181020102210243000500070009000110001300015000C2NO2C2ON

    7、O+CNCO+CO2O2N2NON+O+C+e-NCCOOTemperature(K)Concentration(m-3)MarsTitan10181020102210243000500070009000110001300015000N+NCNCHC3C2HC2CHNH2NHN2+Ar+H+C+e-ArCNCHNN2Temperature(K)Concentration(m-3)CompositionSpectral lines,Spectroscopy measurementsTransport CoefficientsModellingThermodynamicPropertiesRadi

    8、ative loss termInteraction Potentials*Intensities calculation(Boltzmann distribution)MarsLine CI 2582.9 10-10 m10-510-310-11011031053000500070009000110001300015000TitanMarsTemperature(K)Intensity(W/m3/sr)CompositionSpectral lines,Spectroscopy measurementsTransport CoefficientsModellingThermodynamicP

    9、ropertiesRadiative loss termInteraction PotentialsThermodynamic properties Massic density:Internal energy:e00.050.100.153000600090001200015000MarsTitanTemperature(K)Massic density(kg/m3)00.5x1081.0 x1083000500070009000110001300015000TitanMarsTemperature(K)Internal energy(J/kg)CompositionSpectral lin

    10、es,Spectroscopy measurementsTransport CoefficientsModellingThermodynamicPropertiesRadiative loss termInteraction PotentialsPotential interactionsCharged-Charged:Shielded with Debye length Coulombian potential Neutral-Neutral:Lennard Jones Potential(evalaute and combining rules)Charged-Neutral:Dipole

    11、 and charge transferElectrons-neutral:Bibliography and estimationsTransport coefficients:Chapman-Enskog methodElectrical conductivity:third orderViscosity coefficient:fourth orderTotal thermal conductivity k:summation of four termstranslational thermal conductivity due to the electrons,translational

    12、 thermal conductivity due to the heavy species particles,internal thermal conductivity,chemical reaction thermal conductivity.0.000010.0010.11010003000500070009000110001300015000MarsTitanTemperature(K)Electrical Conductivity(S/m)0.000100.000150.000203000500070009000110001300015000TitanMarsTemperatur

    13、e(K)Viscosity(Pa.s)012343000600090001200015000TitanMarsTemperature(K)Thermal Conductivity(W/m/K)Axisymmetry LTE model for inductive plasma torches LTE flow field equations USzUrGrUrGzUrFrUrFtrUzrzr RadJoulerzrrzzzzzrzrrrzrrrzzzzrzzrrrzrrrzrrPrPuurfrfPuUSqUGqUGPeuuuPuuuuUFPeuuuuuPuuUFeuuuU222000,U:co

    14、nservative variable vector Fr(U),Fz(U):convective fluxes Gr(U),Gz(U):diffusive fluxes S(U):source termrurururuzuruzururuzuzuzurururuzururrzrrzrrzzzzrzrzzrrrzrrr232322322,Equation of state of the plasma considered:,PP with:internal energy defined by:221ueViscous termsrTkqzTkqrz,Conductive heat fluxes

    15、Lorentz forceBJRe,0f,fzr21Joule heatingEJEPJoule0Re21Radiative loss term PRadPhysical model:assumptions-Classical torch geometry axisymmetric geometry-Local Thermodynamic Equilibrium(LTE)conditions for the plasma-Unsteady state,laminar,swirling plasma flow(tangential component)-Optically thin plasma

    16、-Negligible viscous work and displacement currentMHD induction equations00JEJH,B,EBJ,Hi01JEEii B:magnetic induction H:magnetic field E:electric field J and J0:current density and source current density:magnetic permeability:electric conductivityEquations formulated in terms of electric field ENumeri

    17、cal methodHydrodynamics(three steps)To obtain an approximation of the solution U on each cell,we use a fractional step technique coupling the finite volume method and the finite element method:First step:To compute the convective fluxes,we use a finite volume scheme with multislope MUSCL reconstruct

    18、ion where the fluxes are calculated using a HLLC scheme.Second step:We use a Runge Kutta method to integrate the source terms.Third step:We use a finite element method to evaluate the diffusive contribution.ElectromagneticTo solve the partial differential equation,we use a standard finite element me

    19、thod with a standard triangulation of the domain and the use of a piecewise linear approximation.Using the cylindrical coordinates(r,z)and assuming-invariance we obtain:EEJiEizErErrr with 1022,Basic datacompositionIntensity calculationThermodynamic propertiesFirst estimation of interaction potentialsFirst estimation of transport coefficients FutureUpgrade the interaction potentialsEstimate the accuracy need to calculate the transport coefficientsRadiative lossUnderstand the energy transfer from the inductive coilsModify the ICP torch

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:Modelling-of-an-Inductively-Coupled-Plasma-Torch-first-step-电感耦合等离子体炬的第一步建模课件.ppt
    链接地址:https://www.163wenku.com/p-4199707.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库