电路分析基础-第六章-一阶电路课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《电路分析基础-第六章-一阶电路课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 电路 分析 基础 第六 一阶 课件
- 资源描述:
-
1、第六章第六章 一阶电路一阶电路6-1 分解方法在动态电路分析中的应用分解方法在动态电路分析中的应用6-2 零状态响应零状态响应 6-3 阶跃响应阶跃响应 冲激响应冲激响应 6-4 零输入响应零输入响应 6-5 线性动态电路的叠加定理线性动态电路的叠加定理 6-6 三要素法三要素法 6-7 瞬态和稳态瞬态和稳态6-8 正弦激励的过渡过程和稳态正弦激励的过渡过程和稳态 由于电路中的开关突然动作,改变了电路的结构由于电路中的开关突然动作,改变了电路的结构 .或元件的参数,使电路从原稳态向新稳态过渡。或元件的参数,使电路从原稳态向新稳态过渡。t=0 换路时刻换路时刻t=0 换路前一瞬间换路前一瞬间t=
2、0+换路后一瞬间换路后一瞬间t 0第六章第六章 一阶电路一阶电路一、换路的基本概念一、换路的基本概念 .0,0,0+充电前充电前充电过程充电过程充电后充电后原稳态原稳态过渡过程过渡过程新稳态新稳态UsUs/R设设uc(0)=0 .CRSUs+_uc*电路变量的初始值电路变量的初始值y(0+)和稳态值和稳态值y()的计算的计算0uctt=0换路换路:icic(开关动作瞬间开关动作瞬间).(原稳态的终了时刻原稳态的终了时刻).(向新稳态过渡的起始时刻向新稳态过渡的起始时刻).二、换路定律二、换路定律。dtdiLtuLL)(否否则则均均不不能能发发生生跃跃变变,)(tuc)()(0 0ccuu 在在
3、换换路路时时刻刻刻刻为为有有限限值值,则则在在任任意意时时可可知知,若若由由)(tu dtdiLtuLLL)()()(titiLL显显然然,在在任任意意时时刻刻)()(tutucc 显显然然,在在任任意意时时刻刻刻刻为为有有限限值值,则则在在任任意意时时可可知知,若若由由)(tidtduCticcc )(,均均不不能能发发生生跃跃变变)(tiL)(0)0(LLii 在在换换路路时时刻刻。dtduCticc)(否否则则 换换路路定定律律表表达达式式:符符合合换换路路定定律律时时)0()0()0()0(LLcciiuu和和一般情况下一般情况下,只有只有.例如例如:.)0()0(yy)()()()(
4、0000LLccuuii )()()()(0000RRRRuuii )0()0(0()0(LLccii uu)()()、()()()、(0 0 0 0 00 LLLccciiiuuu可统一记为可统一记为可统一记为可统一记为 必须注意必须注意:其它各电压或电流其它各电压或电流 .三、直流稳态的概念三、直流稳态的概念直流稳态直流稳态:电路中各元件的电压和电流均为定电路中各元件的电压和电流均为定值。值。dtduCiuccc为为定定值值,则则若若0 dtdiLuiLLL为为定定值值,则则若若电电容容可可等等效效为为开开路路。时时且且即即电电路路处处于于直直流流稳稳态态时时),(0cu电电感感可可等等效
5、效为为短短路路。时时且且即即电电路路处处于于直直流流稳稳态态时时),(0Li0四、初始值和稳态值的计算四、初始值和稳态值的计算例例 电路如下图所示,已知换路前电路处于稳态,求:电路如下图所示,已知换路前电路处于稳态,求:(1)各电流和电压(各电流和电压(t=0+时)的初始值。时)的初始值。(2)电容充电完毕后(电容充电完毕后(t=时)各电流和电压的稳态值。时)各电流和电压的稳态值。1A00)()(LLii2V62420 1)(cu)解解(1A2460)(Li2V00)()(ccuu6V+_ 422iL(0)+_ uC(0)t=06V+_ u3+_ 22+_ 12V ab4+_ uC u1+_
6、uL+_ u2+_ i1 iC iL t=0LC整理、化简得:整理、化简得:2i1(0+)+iC(0+)=5 i1(0+)iC(0+)=16i1(0+)2iC(0+)+uL(0+)=122i1(0+)+4iC(0+)uL(0+)=2i1(0+)iC(0+)=1ic(0+)i1(0+)i1(0+)iC(0+)+_ 2V+_ 12V 1A u2(0+)_+u1(0+)+_ uL(0+)+_ u3(0+)_+4 2 2 t=0+解得解得 i1(0+)=2 A iC(0+)=1 A u1(0+)=4i1(0+)=8 V u2(0+)=2iC(0+)=2 V u3(0+)=2iL(0+)=2 V uL(
7、0+)=u3(0+)+u2(0+)+2=2 V或或 uL(0+)=u3(0+)u1(0+)+12=2 Vt=0+i1(0+)iC(0+)+_ 2V+_ 12V 1A u2(0+)_+u1(0+)+_ uL(0+)+_ u3(0+)_+4 2 2 ic(0+)i1(0+)(2)iC()=0 uL()=0 i1()=iL()=12/(4+2)=2A u1()=4i1()=8V u2()=0 uC()=u3()=2iL()=4Vi1()iC()+_ 12V u2()_+u1()+_ uL()+_ u3()_+iL()uC()+_ 4 2 2 t=6-2 零状态响应零状态响应6-1 分解方法在动态电路
8、分析中的应用(略)分解方法在动态电路分析中的应用(略)零状态响应:零状态响应:电路的初始状态为零电路的初始状态为零 uC(0)=0 或或iL(0)=0,仅由外接电源所引起的响应。仅由外接电源所引起的响应。一、一、RC电路的零状态响应电路的零状态响应00)(cu 1 )()(RCtsceUtu解解方方程程得得(t0)(t0)sccUtutRi)()(sccUudtduRCRCtscceRUdtduCti)(RuC(0)=0+_ uC+_ US t=0iC C(参见(参见P188).)()(tcceutu1 scUu)(且且注注意意到到可可表表示示为为则则)(tuc RC 若若令令(时间常数(时间
9、常数 P189)tcceiti)()(0 1 RCtsccRCtsceRUdtduCtieUtu)()()(uC+_ t=US+_ RiC()=0Rt=0+US+_ iC iC(0+)()(tcceiti1 但但!00 0 RUiiScc)()(而而,0.982Us0.0183ic(0+)Us0 4 )()(tiUtutCSC,时时当当 理论上当理论上当t时时 uc(t)Us,ic(t)0实用中一般认为实用中一般认为 4 3 2 1 0uc(t)i(t)t)()(tcceutu1 tcceiti)()(0ic(0+)1)()(RCtsceUtuRCtsceRUti)(tLRsLLeUdtdiL
10、tu )((t0)(t0)二、二、RL电路的零状态响应电路的零状态响应 iL(0)=0+_ uS RiL t=0uL+_ sLLUtutRi)()(sLLURidtdiL00)(Li)()(tLRsLeRUti 1 解解方方程程得得)()()(tLLLeititi1 可可表表示示为为则则RL 若若令令RUisL)(且且注注意意到到t=R+_ uS iL()(时间常数)(时间常数).)()(tLLeutu1 但但tLLeutu)()(0 t=0+_ uS R+_ uC t=R+_ uS iL()!00 0 sLLUuu)()(而而,综上所述综上所述,在一阶电路的零状态响应中,只要求出,在一阶电路
11、的零状态响应中,只要求出uC()、iC(0+)、iL()、uL(0+)和相应的时间常数和相应的时间常数,即可分别,即可分别根据式、得解。根据式、得解。例例6-1 (P192).iC t=0i+_ uC uC(0)=0ISRCISiC()+_ uC()t=)()()(tSceIRtuti1 RCRIusC,解解 )()()()(RCtstcceRIeutu1 1 RCtSSceItiIti)()(例例6-2、例、例6-3、*例例6-4 .RISiC(0+)t=0+0 ScIi)(RCtStcceIeiti)()(0RCtScceIdtduCti)(或或iC t=0i+_ uC uC(0)=0IS
12、RC6-3阶跃响应阶跃响应 冲激响应冲激响应 .1.单位阶跃函数单位阶跃函数 一一、阶跃函数、阶跃函数 .0 10 0)(ttt 0 0 0)(tUttus)()(tUtus 动动 态态网网 络络)(t sU+_+_ u(t)动动 态态网网 络络t=0ab+_ u(t)sU+_ 10t)(t 0tUsu(t)2延时单位阶跃函数延时单位阶跃函数 ttttt t 1 0000)(00)即即(tt 00)即即(tt 例例1)()(15ttub 15V)()(ttua(b)125ub(V)t(S)(a)5ua(V)01t(S)(0tt 1t0t0V)(25t V32)(t)()(tUtusd2)()(
13、sin11ttttUm 11 00 0 0 tttttUttumesin)()(sin1tttUm (d)10t(S)2ud0t1Umtue(e))()(ttuc 4)(16t)(sin)(ttUtume )(sin)(ttUtumd 或或(c)2013t(S)uc(V)42例例 2 求求uC(t)二、阶跃响应二、阶跃响应 电路的电路的初始状态为零初始状态为零,仅由阶跃信号引起的响应。,仅由阶跃信号引起的响应。(即零状态响应)(即零状态响应)设设uC(0)=0+_ uC RC+_ uS 10t(a)uS(V)V a)()()(ttus?)(tuc 6-2 零状态响应零状态响应零状态响应:零状态
14、响应:电路的初始状态为零电路的初始状态为零 uC(0)=0 或或iL(0)=0,仅由外接电源所引起的响应。仅由外接电源所引起的响应。一、一、RC电路的零状态响应电路的零状态响应00)(cu(t0)(t0)sccUtutRi)()(sccUudtduRCRCtscceRUdtduCti)(RuC(0)=0+_ uC+_ US t=0iC C 1 )()(RCtsceUtu解解方方程程得得回阅回阅例例 2 求求uC(t)(tuc(单位阶跃响应)(单位阶跃响应)二、阶跃响应二、阶跃响应 电路的电路的初始状态为零初始状态为零,仅由阶跃信号引起的响应。,仅由阶跃信号引起的响应。(即零状态响应)(即零状态
15、响应)设设uC(0)=0+_ uC RC+_ uS 10t(a)uS(V)V a)()()(ttus V1)()(teRCt V1151)()()(tetuRCtc V2152)()(teRCt V3123)()(teRCt(c)125uS(V)t(S)(b)5ua(V)01t(S)(d)2013t(S)uS(V)42V15 b)()(ttus)(V2515 c)()()(tttus )()()()(1151 tetuRCtc V32164 d)()()()()(ttttus )()()(tetuRCtc 14)()(1161teRCt 求阶跃响应的一般规律求阶跃响应的一般规律:1.求出电路的
16、求出电路的单位阶跃响单位阶跃响应应S(t);.222112211)()()()()()(.ttSkttSktfttkttktxs则则电电路路的的响响应应为为若若输输入入信信号号为为 例例3 已知图已知图(a)所示电路的初始状态为零,输入信号所示电路的初始状态为零,输入信号us(t)如图如图(b)所示,求所示,求uc(t)、ic(t)。(b)2013t(S)uc(V)42(a)+_ uC iC uS(t)+_ 4121/3F解解+_ 1V Sic(0+)412t=0+_ 1V 412Suc()+_ t=S 1313 0CR A410)(icSV 43112412)(ucS 31241240RV1
展开阅读全文