书签 分享 收藏 举报 版权申诉 / 48
上传文档赚钱

类型排列组合二项式定理教学课件.ppt

  • 上传人(卖家):晟晟文业
  • 文档编号:4195262
  • 上传时间:2022-11-18
  • 格式:PPT
  • 页数:48
  • 大小:912KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《排列组合二项式定理教学课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    排列组合 二项式 定理 教学 课件
    资源描述:

    1、第九章第九章 排列、组合、二项式定理9.1基本原理教学目的:1、正确理解加法原理和乘法原理2、能正确运用它们来解决排列组合问题教学重点:加法原理和乘法原理的区别教学难点:对复杂事件的分步与分类书架上层放有6本不同的数学书,下层放有5本不同的语文书。(1)从中任取1本有多少种不同的取法?(2)从中任取数学书语文书各1本,有多少种不同的取法?例1例2由数字1、2、3、4、5可以组成多少个各位数字可以重复的三位数?解:要组成一个三位数可以分成三个步骤完成:第一步确定百位数字,从5个数字中任选一个数字共有5种选法;第二步确定十位数字,由于数字允许重复仍有5种选法第三步确定个位数字,同理也有5种选法根据

    2、乘法原理可以组成的三位数的个数为:N=555=125(一)加法原理:做一件事,完成它可以有 N类办法在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法在第n类办法中有mn种不同的方法。那么完成这件事共有N=m1+m2+mn种不同的方法。(二)乘法原理:做一件事,完成它需要分成n个步骤做第一步有m1种不同的方法,做第二步有m2种不同的方法做第n步有mn种不同的方法。那么完成这件事共有N=m1m2mn种不同的方法。问题1某人从甲地到乙地,旱路有5条,水路有4条,问从甲地到乙地有多少种不同走法?问题2从甲村到达乙村有3条路,从乙村到达丙村有2条路。问从甲村经乙村到达丙村共有多少种不同

    3、走法?甲乙甲乙丙由数字1、2、3、4、5可以组成多少个各位数字不可以重复的三位数?思考?练习1从甲地到乙地,可以乘火车,也可以乘轮船,还可以乘汽车。一天中火车有4班,汽车有2班,轮船有3班。问:一天中乘坐这些交通工具从甲地到乙地共有多少种不同走法?练习2有数字1、2、3、4、5、6、7、8、9可以组成多少个七位数字的电话号码(各位上数字允许重复)?练习3如图从甲地到乙地有两条陆路可走,从乙地到丙地有三条陆路可走从甲地不经过乙地到丙地有两条水路可走甲乙丙1、从甲地经乙地到丙地有多少种不同的走法?2、从甲地到丙地共有多少种不同走法?练习4如图从甲地 到乙地有2条路可通,从乙地到丙地有3条路可通从甲

    4、地到丁地有4条路可通从丁地到丙地有2条路可通从甲地到丙地有多少种不同的走法?甲乙丁丙解:(1)从书架上任取一本书,有两类 办法:第一类办法是从上层取数学书,可以从6本书中任取一本,有6种方法;第二类办法是从下层取语文书,可以从5本书中任取一本,有5种方法;据加法原理得到不同的取法种数为:N=m1+m2=6+5=11答:从书架上任取一本书有11种不同的取法。(2)从书架上任取数学书语文书各1本,可以分成两个步骤完成。第一步,取1本数学书有6种方法。第二步,取1语文书有5种方法。根据乘法原理得到不同的取法种数为:N=m1.m2=65=30答:从书架上任取数学书语文书各1本有30种不同的取法。作业棱

    5、锥、圆锥的体积复习:1、等底面积等高的两个柱体体积相等。2、V柱体Sh V圆柱r2 h 3、柱体体积公式的推导:柱体体积公式的推导:等底面积等高的几个柱体被平行于平面的平面所截截面面积始终相等体积相等V长方体abcV柱体Sh V圆柱r2 h问题:对比柱体体积公式的推导及结论,猜想一下问题:对比柱体体积公式的推导及结论,猜想一下 锥体体积是否具有相似的结论?锥体体积是否具有相似的结论?定理一、等底面积等高的两个锥体体积相等。h1S1h1S1hShS取任意两个锥体,它们的底面积为S,高都是h平行于平面的任一平面去截截面面积始终相等两个锥体体积相等定理一、等底面积等高的两个锥体体积相等。h1S1h1

    6、S1hShShhSShhSS22122211,SSSS21SS21证明:取任意两个锥体,设它们的底面积为S,高都是h。把这两个锥体放在同一个平面上,这是它们的顶点都在和平面平行的同一个平面内,用平行于平面的任一平面去截它们,截面分别与底面相似,设截面和顶点的距离是h1,截面面积分别是S1、S2,那么 根据祖搄原理,这两个锥体的体积相等。与三棱柱相对照,请猜想三棱锥体积公式。ABCACB与三棱柱相对照,请猜想三棱锥体积公式。ABCACBBCABCACBABCABCABCACBABCABCABCACBABCABCABCACBABCABCABCACBABCA与三棱柱相对照,请猜想三棱锥体积公式。BC

    7、ABCACBABCA与三棱柱相对照,请猜想三棱锥体积公式。与三棱柱相对照,请猜想三棱锥体积公式。定理二:如果三棱锥的底面积是定理二:如果三棱锥的底面积是S S,高是,高是h h,那么,那么 它的体积是它的体积是 V V三棱锥三棱锥 ShShABCA31CB把三棱锥1以ABC为底面、AA1为侧棱补成一个三棱柱。定理二:如果三棱锥的底面积是定理二:如果三棱锥的底面积是S S,高是,高是h h,那么,那么 它的体积是它的体积是 V V三棱锥三棱锥 ShSh31ABCACB连接BC,然后把这个三棱柱分割成三个三棱锥。就是三棱锥1 和另两个三棱 锥2、3。23定理二:如果三棱锥的底面积是定理二:如果三棱

    8、锥的底面积是S S,高是,高是h h,那么,那么 它的体积是它的体积是 V V三棱锥三棱锥 ShSh31 就是三棱锥1 和另两个三棱 锥2、3。BCABCACBABCABCABCACBABCABCABCACBABCABCABCACBABCABCABCACBABCABCABCACBABCA23定理二:如果三棱锥的底面积是定理二:如果三棱锥的底面积是S S,高是,高是h h,那么,那么 它的体积是它的体积是 V V三棱锥三棱锥 ShSh31BCAB2CACB3ABCA1三棱锥1、2的底ABA、BAB的面积相等。定理二:如果三棱锥的底面积是定理二:如果三棱锥的底面积是S S,高是,高是h h,那么,

    9、那么 它的体积是它的体积是 V V三棱锥三棱锥 ShSh31CACB3ABCA1BCAB2BCAB2ABCA1BCAB2ABCA1三棱锥1、2的底ABA、BAB的面积相等,高也相等(顶点都是C)。A1BCAB2BCAB2ABCA1BCAB2ABCA1高高定理二:如果三棱锥的底面积是定理二:如果三棱锥的底面积是S S,高是,高是h h,那么,那么 它的体积是它的体积是 V V三棱锥三棱锥 ShShABCA131CACB3BCAB2三棱锥2、3的底BCB、CBC的面积相等。定理二:如果三棱锥的底面积是定理二:如果三棱锥的底面积是S S,高是,高是h h,那么,那么 它的体积是它的体积是 V V三棱

    10、锥三棱锥 ShShABCA131CACB3BCAB2BCAB2BCAB2BCAB2BCAB2BCAB2BCAB2BCAB2BCAB2三棱锥三棱锥2 2、3 3的底的底BCBBCB、C CB BC C的面积相等。的面积相等。高也相等(顶点都是高也相等(顶点都是A A)。)。高高定理二:如果三棱锥的底面积是定理二:如果三棱锥的底面积是S S,高是,高是h h,那么,那么 它的体积是它的体积是 V V三棱锥三棱锥 ShShABCA131CACB3BCAB2V1V2V3 V三棱锥31定理二:如果三棱锥的底面积是定理二:如果三棱锥的底面积是S S,高是,高是h h,那么,那么 它的体积是它的体积是 V

    11、V三棱锥三棱锥 ShSh31定理证明:已知:三棱锥1(A1-ABC)的底面积S,高是h.求证:V三棱锥 Sh证明:把三棱锥1以ABC为底面、AA1为侧棱补成一个三棱 柱,然后把这个三棱柱分割成三个三棱锥,就是三 棱锥1和另两个三棱锥2、3。三棱锥1、2的底ABA1、B1A1B的面积相等,高也相等(顶点都是C);三棱锥2、3的底 BCB1、C1B1C 的面积相等,高也相等 (顶点都是A1)V1V2V3 V三棱锥。V三棱柱 Sh。V三棱锥 Sh。31313131ABCACB23任意锥体的体积公式:定理三:如果一个锥体(棱锥、圆锥)的底面积 是S,高是h,那么它的体积是 V锥体 Sh31 推论:如果

    12、圆锥的底面半径是r,高是h,那么它的体积是 V圆锥 r2h31小结:定理一、等底面积等高的两个锥体体积相等。定理二:如果三棱锥的底面积是定理二:如果三棱锥的底面积是S S,高是,高是h h,那么,那么 它的体积是它的体积是 V V三棱锥三棱锥 ShSh定理三:如果一个锥体(棱锥、圆锥)的底面积 是S,高是h,那么它的体积是 V锥体 Sh推论:如果圆锥的底面半径是r,高是h,那么它的体积是 V圆锥 r2h31313131例题一:如图:已知三棱锥A-BCD的侧棱AD垂直于底 面BCD,侧面ABC与底面所成的角为 求证:V三棱锥 SABCADcos A D B CE 证明:在平面BCD内,作DE B

    13、C,垂足为E,连接AE,DE就是AE在平面BCD上的射影。根据三垂线定理,AE BC。AED。V三棱锥 SB CD AD31 SAB C ADcos31 BC ED AD2131 BC AEcos AD213131例题一:如图:已知三棱锥A-BCD的侧棱AD垂直于底 面BCD,侧面ABC与底面所成的角为 求证:V三棱锥 SABCADcos A D B CE 问题1、ADcos有什么几何意义?F 结论:V三棱锥 SAB C d 3131例题一:如图:已知三棱锥A-BCD的侧棱AD垂直于底 面BCD,侧面ABC与底面所成的角为 求证:V三棱锥 SABCADcos A D B CE 结论:V三棱锥V

    14、C-AE DVB-AE D 问题2、解答过程中的 BC AEcos AD其中 AEcos AD可表示意思?212131AEcosEDSAED EDAD 21又BE与CE都垂直平面AED,故BE、CE分别是三棱锥B-AED、C-AED的高。分析:练习1:将长方体沿相邻三个面的对角线截去一个三棱锥,这个三棱锥的体积是长方体体积几分之几?(请 列出三棱锥体积表达式)AB CD A CB D问题1、你能有几种 解法?问题2、如果这是一 个平行六面 体呢?或者 四棱柱呢?练习2:从一个正方体中,如图那样截去四个三棱锥,得到 一个正三棱锥A-BCD,求它的体积是正方体体积的 几分之几?C D AB 问题2

    15、、如果改为求 棱长为a的正四面 体A-BCD的体积。你能有几种解法?问题1、你能有几种 解法?解一、补形,将三棱 锥补成一个正方体。解二、利用体积公式 V四面体 SBCDh31 解三、将四面体分割为 三棱锥C-ABE和三棱 锥D-ABEE小结:1、锥体体积公式的证明体现了从整体上掌握知识的思想,形象具体地在立体几何中运用“割补”进行解题的技巧。2、三棱锥体积的证明分两步进行:、证明底面积相等、高也相等的任意两个锥体体积相等:(一个锥体的体积计算可以间接求得)、证明三棱锥的体积等于其底面积与高的积的三分之一:(它充分揭示了一个三棱锥的独特性质,可根据需要重 新安排底面,这样也为点到面的距离、线到

    16、面的距离计 算提供了新的思考方法。这一点以后再学习。)3、锥体的体积计算在立体几何体积计算中,占有重要位置,它 可补成柱体又可以截成台体,它可以自换底面、自换顶点,在 计算与证明中有较大的灵活性,技巧运用得当,可使解题过程 简化,常常给人耳目一新的感觉。小结:小结:4、定理及推论 定理一、等底面积等高的两个锥体体积相等。定理二、如果三棱锥的底面积是S,高是h,那么 它的体积是 V三棱锥 Sh 定理三:如果一个锥体(棱锥、圆锥)的底面积 是S,高是h,那么它的体积是 V锥体 Sh 推论:如果圆锥的底面半径是r,高是h,那么它的体积是 V圆锥 r2h313131作业:1、四面体O-ABC中,除OC外其余的棱长均为1,且OC与 平面ABC所成的角的余弦值为,求此四面体的体积。2、三棱锥P-ABC中,已知PABC,PABCa,PA,BC的 公垂线段为EF(E、F分别在PA、BC上),且EFh,求 三棱锥的体积。

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:排列组合二项式定理教学课件.ppt
    链接地址:https://www.163wenku.com/p-4195262.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库