典型电力电子器件概要课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《典型电力电子器件概要课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 典型 电力 电子器件 概要 课件
- 资源描述:
-
1、典型全控型器件典型全控型器件 1.4.1 门极可关断晶闸管门极可关断晶闸管 1.4.2 电力晶体管电力晶体管 1.4.3 电力场效应晶体管电力场效应晶体管 1.4.4 绝缘栅双极晶体管绝缘栅双极晶体管1.41门极可关断晶闸管在晶闸管问世后不久出现。20世纪80年代以来,信息电子技术与电力电子技术在各自发展的基础上相结合高频化、全控型、采用集成电路制造工艺的电力电子器件,从而将电力电子技术又带入了一个崭新时代。典型代表门极可关断晶闸管、电力晶体管、电力场效应晶体管、绝缘栅双极晶体管。典型全控型器件典型全控型器件第五章第五章2门极可关断晶门极可关断晶闸管闸管门极可关断晶闸管(Gate-Turn-O
2、ff Thyristor GTO)晶闸管的一种派生器件 可以通过在门极施加负的脉冲电流使其关断 GTO的电压、电流容量较大,与普通晶闸管接近,因而在兆瓦级以上的大功率场合仍有较多的应用一一31.GTO1.GTO的结构和工作原理的结构和工作原理结构:结构:与普通晶闸管的相同点相同点:PNPN四层半导体结构,外部引出阳极、阴极和门极。和普通晶闸管的不同点不同点:GTO是一种多元的功率集成器件,内部包含数十个甚至数百个共阳极的小GTO元,这些GTO元的阴极和门极则在器件内部并联在一起。c)图1-13AGKGGKN1P1N2N2P2b)a)AGK GTO的内部结构和电气图形符号 a)各单元的阴极、门极
3、间隔排列的图形 b)并联单元结构断面示意图 c)电气图形符号幻灯片 124工作原理:工作原理:与普通晶闸管一样,可以用图1-7所示的双晶体管模型来分析。RN PNPN PAGSKEGIGEAIKIc2Ic1IAV1V2P1AGKN1P2P2N1N2a)b)晶闸管的双晶体管模型及其工作原理 1+2=1是器件临界导通的条件。当1+21时,两个等效晶体管过饱和而使器件导通;当1+21时,不能维持饱和导通而关断。由P1N1P2和N1P2N2构成的两个晶体管V1、V2分别具有共基极电流增益1和2。5GTO能够通过门极关断的原因是其与普通晶闸管有如下区别区别:(1)设计2较大,使晶体管V2控 制灵敏,易于
4、GTO关断。(2)导 通 时1+2更 接 近 1(1.05,普通晶闸管1+21.15)导通时饱和不深,接近临界饱和,有利门极控制关断,但导通时管压降增大。(3)多元集成结构使GTO元阴极面积很小,门、阴极间距大为缩短,使得P2基区横向电阻很小,能从门极抽出较大电流 。RN P NP N PAGSKEGIGEAIKIc2Ic1IAV1V2b)晶闸管的工作原理6由上述分析我们可以得到以下结论结论:GTO导通过程与普通晶闸管一样,只是导通时饱和程度较浅。GTO关断过程:强烈正反馈门极加负脉冲即从门极抽出电流,则Ib2减小,使IK和Ic2减小,Ic2的减小又使 IA和Ic1减小,又进一步减小V2的基极
5、电流。当IA和IK的减小使1+21时,器件退出饱和而关断。多元集成结构还使GTO比普通晶闸管开通过程快,承受di/dt能力强。72.GTO的动态的动态特性特性开通过程:开通过程:与普通晶闸管类似,需经过延迟时间td和上升时间tr。Ot0t图1-14iGiAIA90%IA10%IAtttftstdtrt0t1t2t3t4t5t6 图1-14 GTO的开通和关断过程电流波形门极可关断晶门极可关断晶闸管闸管1.4.18关断过程:关断过程:与普通晶闸管有所不同 抽取饱和导通时储存的大量载流子储存时间储存时间ts,使等效晶体管退出饱和。等效晶体管从饱和区退至放大区,阳极电流逐渐减小下降时间下降时间tf。
6、残存载流子复合尾部尾部时间时间tt。通常tf比ts小得多,而tt比ts要长。门极负脉冲电流幅值越大,前沿越陡,抽走储存载流子的速度越快,ts越短。门极负脉冲的后沿缓慢衰减,在tt阶段仍保持适当负电压,则可缩短尾部时间。Ot0t图1-14iGiAIA90%IA10%IAtttftstdtrt0t1t2t3t4t5t6 GTO的开通和关断过程电流波形93.3.GTO的主要参数的主要参数 延迟时间与上升时间之和。延迟时间一般约12s,上升时间则随通态阳极电流值的增大而增大。一般指储存时间和下降时间之和,不包括尾部时间。GTO的储存时间随阳极电流的增大而增大,下降时间一般小于2s。2)关断时间关断时间
7、toff1)开通时间开通时间ton 不少GTO都制造成逆导型,类似于逆导晶闸管,需承受反压时,应和电力二极管串联。许多参数和普通晶闸管相应的参数意义相同,以下只介绍意义不同的参数。103)最大可关断阳极电流最大可关断阳极电流IATO4)电流关断增益电流关断增益 offGMATOoffII=(1-8)off一般很小,只有5左右,这是GTO的一个主要缺点。1000A的GTO关断时门极负脉冲电流峰值要200A。GTO额定电流。最大可关断阳极电流与门极负脉冲电流最大值IGM之比称为电流关断增益。11门极可关断晶闸管门极驱动电路门极可关断晶闸管门极驱动电路(一)(一)GTO门极驱动电路结构与驱动波形门极
8、驱动电路结构与驱动波形门极门极驱动信号波形驱动信号波形门极门极驱动电路结构示意图驱动电路结构示意图12GTO门极驱动电路实例门极驱动电路实例门极门极驱动电路驱动电路13术语用法:术语用法:电力晶体管(Giant TransistorGTR,直译为巨型晶体管)耐高电压、大电流的双极结型晶体管(Bipolar Junction TransistorBJT),英文有时候也称为Power BJT。在电力电子技术的范围内,GTR与BJT这两个名称等效。应用应用 20世纪80年代以来,在中、小功率范围内取代晶闸管,但目前又大多被IGBT和电力MOSFET取代。电力晶体管电力晶体管二二14151.GTR的结
9、构和工作原理的结构和工作原理图 1-1 5a)基 极 bP 基 区N 漂 移 区N+衬 底基 极 b 发 射 极 c集 电 极 cP+P+N+b)bec空 穴 流电子流c)EbEcibic=ibie=(1+ib图1-15 GTR的结构、电气图形符号和内部载流子的流动 a)内部结构断面示意图 b)电气图形符号 c)内部载流子的流动 与普通的双极结型晶体管基本原理是一样的。主要特性是耐压高、电流大、开关特性好。通常采用至少由两个晶体管按达林顿接法组成的单元结构。采用集成电路工艺将许多这种单元并联而成。16在应用中,GTR一般采用共发射极接法。集电极电流ic与基极电流ib之比为 (1-9)GTR的电
10、流放大系数电流放大系数,反映了基极电流对集电极电流的控制能力 当考虑到集电极和发射极间的漏电流Iceo时,ic和ib的关系为 ic=ib+Iceo (1-10)产品说明书中通常给直流电流增益hFE在直流工作情况下集电极电流与基极电流之比。一般可认为 hFE。单管GTR的 值比小功率的晶体管小得多,通常为10左右,采用达林顿接法可有效增大电流增益。bcii=17+Ub-UbCBE+Ucc18 2.GTR的基本特性的基本特性 (1)静态特性静态特性 共发射极接法时的典型输出特性:截止区截止区、放大区放大区和饱和区饱和区。在电力电子电路中GTR工作在开关状态,即工作在截止区或饱和区 在开关过程中,即
11、在截止区和饱和区之间过渡时,要经过放大区。截止区放大区饱和区图1-16OIcib3ib2ib1ib1ib2 BUcex BUces BUcer Buceo实际使用时,为确保安全,最高工作电压要比BUceo低得多。22 2)集电极最大允许电流集电极最大允许电流IcM通常规定为hFE下降到规定值的1/21/3时所对应的Ic实际使用时要留有裕量,只能用到IcM的一半或稍多一点。3)集电极最大耗散功率集电极最大耗散功率PcM最高工作温度下允许的耗散功率产品说明书中给PcM时同时给出壳温TC,间接表示了最高工作温度。234.GTR的二次击穿现象与安全工作区的二次击穿现象与安全工作区一次击穿一次击穿 集电
12、极电压升高至击穿电压时,Ic迅速增大,出现雪崩击穿。只要Ic不超过限度,GTR一般不会损坏,工作特性也不变。二次击穿二次击穿 一次击穿发生时Ic增大到某个临界点时会突然急剧上升,并伴随电压的陡然下降。常常立即导致器件的永久损坏,或者工作特性明显衰变。24安全工作区(安全工作区(Safe Operating AreaSOA)最高电压UceM、集电极最大电流IcM、最大耗散功率PcM、二次击穿临界线限定。SOAOIcIcMPSBPcMUceUceM图1-18 GTR的安全工作区25也分为结型结型和绝缘栅型绝缘栅型(类似小功率Field Effect TransistorFET)但通常主要指绝缘栅型
13、绝缘栅型中的MOS型型(Metal Oxide Semiconductor FET)简称电力MOSFET(Power MOSFET)结型电力场效应晶体管一般称作静电感应晶体管(Static Induction TransistorSIT)电力场效应晶体管电力场效应晶体管 特点特点用栅极电压来控制漏极电流 驱动电路简单,需要的驱动功率小。开关速度快,工作频率高。热稳定性优于GTR。电流容量小,耐压低,一般只适用于功率不超过10kW的电力电子装置。三三261.电力电力MOSFET的结构和工作原理的结构和工作原理 电力电力MOSFET的种类的种类 按导电沟道可分为P沟道沟道和N沟道沟道 耗尽型耗尽型
14、当栅极电压为零时漏源极之间就存在导电沟道 增强型增强型对于N(P)沟道器件,栅极电压大于(小于)零时才存在导电沟道 电力MOSFET主要是N沟道增强沟道增强型型2728电力电力MOSFET的结构的结构导通时只有一种极性的载流子(多子)参与导电,是单极型晶体管。导电机理与小功率MOS管相同,但结构上有较大区别。电力MOSFET的多元集成结构,不同的生产厂家采用了不同设计。国际整流器公司(International Rectifier)的HEXFET采用了六边形单元 西门子公司(Siemens)的SIPMOSFET采用了正方形单元 摩托罗拉公司(Motorola)的TMOS采用了矩形单元按“品”字
15、形排列 N+GSDP沟道b)N+N-SGDPPN+N+N+沟道a)GSDN沟道图1-19图1-19 电力MOSFET的结构和电气图形符号29小功率MOS管是横向导电器件电力MOSFET大都采用垂直导电结构,又称为VMOSFET(Vertical MOSFET)大大提高了MOSFET器件的耐压和耐电流能力。按垂直导电结构的差异,又分为利用V型槽实现垂直导电的VVMOSFET和具有垂直导电双扩散MOS结构的VDMOSFET(Vertical Double-diffused MOSFET)。这里主要以VDMOS器件为例进行讨论30 电力电力MOSFET的工作原理的工作原理 截止:截止:漏源极间加正电
16、源,栅源极间电压为零。P基区与N漂移区之间形成的PN结J1反偏,漏源极之间无电流流过。导电:导电:在栅源极间加正电压UGS 栅极是绝缘的,所以不会有栅极电流流过。但栅极的正电压会将其下面P区中的空穴推开,而将P区中的少子电子吸引到栅极下面的P区表面。当UGS大于UT(开启电压或阈值电压)时,栅极下P区表面的电子浓度将超过空穴浓度,使P型半导体反型成N型而成为反型层反型层,该反型层形成N沟道而使PN结J1消失,漏极和源极导电。N+GSDP沟道b)N+N-SGDPPN+N+N+沟道a)GSDN沟道图1-19图1-19 电力MOSFET的结构和电气图形符号绝缘栅双极晶体管311)静态特性静态特性漏极
17、电流ID和栅源间电压UGS的关系称为MOSFET的转转移特性。移特性。ID较大时,ID与与UGS的关系近似线性,曲线的斜率定义为跨导跨导Gfs。01020305040图1-202468a)10203050400b)10 20 305040饱和区非饱和区截止区ID/AUTUGS/VUDS/VUGS=UT=3VUGS=4VUGS=5VUGS=6VUGS=7VUGS=8VID/A图1-20 电力MOSFET的转移特性和输出特性 a)转移特性 b)输出特性2.电力电力MOSFET的基本特性的基本特性32MOSFET的漏极伏安特性的漏极伏安特性:截止区截止区(对应于GTR的截止区)饱和区饱和区(对应于G
18、TR的放大区)非饱和区非饱和区(对应于GTR的饱和区)电力MOSFET工作在开关状态,即在截止区和非饱和区之间来回转换。电力MOSFET漏源极之间有寄生二极管,漏源极间加反向电压时器件导通。电力MOSFET的通态电阻具有正温度系数,对器件并联时的均流有利。01020305040图1-202468a)10203050400b)10 20 305040饱和区非饱和区截止区ID/AUTUGS/VUDS/VUGS=UT=3VUGS=4VUGS=5VUGS=6VUGS=7VUGS=8VID/A 电力MOSFET的转移特性和输出特性 a)转移特性 b)输出特性33 2)动态特性动态特性开通过程开通过程开通
19、延迟时间开通延迟时间td(on)up前沿时刻到uGS=UT并开始出现iD的时刻间的时间段。上升时间上升时间tr uGS从从uT上升到MOSFET进入非饱和区的栅压UGSP的时间段。iD稳态值由漏极电源电压UE和漏极负载电阻决定。UGSP的大小和iD的稳态值有关 UGS达到UGSP后,在up作用下继续升高直至达到稳态,但iD已不变。开通时间开通时间ton开通延迟时间与上升时间之和。a)b)图1-21RsRGRFRLiDuGSupiD信号+UEiDOOOuptttuGSuGSPuTtd(on)trtd(off)tf图1-21 电力MOSFET的开关过程a)测试电路 b)开关过程波形up脉冲信号源,
20、Rs信号源内阻,RG栅极电阻,RL负载电阻,RF检测漏极电流34关断过程关断过程关断延迟时间关断延迟时间td(off)up下降到零起,Cin通过Rs和RG放电,uGS按指数曲线下降到UGSP时,iD开始减小止的时间段。下降时间下降时间tf uGS从UGSP继续下降起,iD减小,到uGS20V将导致绝缘层击穿。除跨导Gfs、开启电压UT以及td(on)、tr、td(off)和tf之外还有:374)极间电容极间电容 极间电容CGS、CGD和CDS 厂家提供:漏源极短路时的输入电容Ciss、共源极输出电容Coss和反向转移电容CrssCiss=CGS+CGD (1-14)Crss=CGD (1-15
21、)Coss=CDS+CGD (1-16)输入电容可近似用Ciss代替。这些电容都是非线性的。漏源间的耐压、漏极最大允许电流和最大耗散功率决定了电力MOSFET的安全工作区。一般来说,电力MOSFET不存在二次击穿问题,这是它的一大优点。实际使用中仍应注意留适当的裕量。38绝缘栅双极晶体管绝缘栅双极晶体管 GTR和和GTO的特点的特点双极型,电流驱动,有电导调制效应,双极型,电流驱动,有电导调制效应,通流能力很强,开关速度较低,所需驱通流能力很强,开关速度较低,所需驱 动功率大,驱动电路复杂。动功率大,驱动电路复杂。MOSFET的优点的优点单极型,电压驱动,开关速度快,输入阻抗单极型,电压驱动,
22、开关速度快,输入阻抗高,热稳定性好,所需驱动功率小而且驱动电路简单。高,热稳定性好,所需驱动功率小而且驱动电路简单。两类器件取长补短结合而成的复合器件Bi-MOS器件 绝缘栅双极晶体管(Insulated-gate Bipolar Transistor IGBT或IGT)GTR和MOSFET复合,结合二者的优点,具有好的特性。1986年投入市场后,取代了GTR和一部分MOSFET的市场,中小功率电力电子设备的主导器件。继续提高电压和电流容量,以期再取代GTO的地位。四四391.IGBT的结构和工作原理的结构和工作原理三端器件:栅极G、集电极C和发射极EEGCN+N-a)PN+N+PN+N+P+
23、发 射 极 栅 极集 电 极注 入 区缓 冲 区漂 移 区J3J2J1GEC+-+-+-IDRNICVJ1IDRonb)GCc)图1-22 IGBT的结构、简化等效电路和电气图形符号a)内部结构断面示意图 b)简化等效电路 c)电气图形符号40IGBT的结构的结构 图1-22aN沟道VDMOSFET与GTR组合N沟道IGBT(N-IGBT)IGBT比VDMOSFET多一层P+注入区,形成了一个大面积的P+N结J1。使IGBT导通时由P+注入区向N基区发射少子,从而对漂移区电导率进行调制,使得IGBT具有很强的通流能力。简化等效电路表明,IGBT是GTR与MOSFET组成的达林顿结构,一个由MO
24、SFET驱动的厚基区PNP晶体管。RN为晶体管基区内的调制电阻。EGCN+N-a)PN+N+PN+N+P+发 射 极栅 极集 电 极注 入 区缓 冲 区漂 移 区J3J2J1GEC+-+-+-IDRNICVJ1IDRonb)GCc)图1-22 IGBT的结构、简化等效电路和电气图形符号a)内部结构断面示意图 b)简化等效电路 c)电气图形符号41IGBT的原理的原理 驱动原理与电力MOSFET基本相同,场控器件,通断由栅射极电压uGE决定。导通导通:uGE大于开启电压开启电压UGE(th)时,MOSFET内形成沟道,为晶体管提供基极电流,IGBT导通。导通压降导通压降:电导调制效应使电阻RN减
25、小,使通态压降小。关断关断:栅射极间施加反压或不加信号时,MOSFET内的沟道消失,晶体管的基极电流被切断,IGBT关断。42432.IGBT的基本特性的基本特性 1)IGBT的静态特性的静态特性O有源区正向阻断区饱和区反向阻断区a)b)ICUGE(th)UGEOICURMUFMUCEUGE(th)UGE增加图1-23 IGBT的转移特性和输出特性a)转移特性 b)输出特性44转移特性转移特性IC与UGE间的关系,与MOSFET转移特性类似。开启电压开启电压UGE(th)IGBT能实现电导调制而导通的最低栅射电压。UGE(th)随温度升高而略有下降,在+25C时,UGE(th)的值一般为26V
展开阅读全文