模电第三章二极管及其基本电路课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《模电第三章二极管及其基本电路课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第三 二极管 及其 基本 电路 课件
- 资源描述:
-
1、学习内容:半导体的基本知识;PN结的形成及特性;二极 管的基本电路及其分析方法;特殊二极管重点:半导体相关的基本概念,PN的形成及单向导电 性;二极管的基本电路及其分析方法;二极管 电路的简化模型;难点:PN结的形成机制,PN结的反向击穿及电容效 应;二极管电路的简化模型分析3.1 半导体的基本知识半导体的基本知识 3.1.1 半导体材料半导体材料 3.1.2 半导体的共价键结构半导体的共价键结构 3.1.3 本征半导体、空穴及其导电作用本征半导体、空穴及其导电作用 3.1.4 杂质半导体杂质半导体3.1.1 半导体的基础知识半导体的基础知识根据物体导电能力根据物体导电能力(电阻率电阻率)的不
2、同,来划的不同,来划分导体、绝缘体和半导体分导体、绝缘体和半导体导体:导体:自然界中很容易导电的物质称为自然界中很容易导电的物质称为导体导体,金属,金属一般都是导体。一般都是导体。绝缘体:绝缘体:有的物质几乎不导电,称为有的物质几乎不导电,称为绝缘体绝缘体,如橡,如橡皮、陶瓷、塑料和石英。皮、陶瓷、塑料和石英。半导体:半导体:另有一类物质的导电特性处于导体和绝缘另有一类物质的导电特性处于导体和绝缘体之间,称为体之间,称为半导体半导体,如锗、硅、砷化镓,如锗、硅、砷化镓和一些硫化物、氧化物等。和一些硫化物、氧化物等。一、一、导体、半导体和绝缘体导体、半导体和绝缘体 3.1.2 半导体的共价键结构
3、半导体的共价键结构硅和锗的原子结构简化模型及晶体结构硅和锗的原子结构简化模型及晶体结构+4+4+4+4+4+4+4+4+4 完全纯净的、不含其他杂质且具有晶体结构的半导体完全纯净的、不含其他杂质且具有晶体结构的半导体称为本征半导体称为本征半导体 将硅或锗材料提将硅或锗材料提纯便形成单晶体,纯便形成单晶体,它的原子结构为它的原子结构为共价键结构。共价键结构。价价电电子子共共价价键键图图 1.1.1本征半导体结构示意图本征半导体结构示意图本征半导体的本征半导体的晶体晶体结构结构当温度当温度 T=0 K 时,半导时,半导体不导电,如同绝缘体。体不导电,如同绝缘体。3.1.3 本征半导体、空穴及其导电
4、作用本征半导体、空穴及其导电作用+4+4+4+4+4+4+4+4+4图图 1.1.2本征半导体中的本征半导体中的 自由电子和空穴自由电子和空穴自由电子自由电子空穴空穴 若若 T ,将有少数价电将有少数价电子克服共价键的束缚成为子克服共价键的束缚成为自自由电子由电子,在原来的共价键中,在原来的共价键中留下一个空位留下一个空位空穴。空穴。T 自由电子自由电子和和空穴空穴使使本本征半导体具有导电能力,征半导体具有导电能力,但很微弱。但很微弱。空穴可看成带正电的空穴可看成带正电的载流子。载流子。本征半导体本征半导体中的两种载流子中的两种载流子(动画1-1)(动画1-2)四、本征半导体中本征半导体中载流
5、子的浓度载流子的浓度在一定温度下在一定温度下本征半导体中本征半导体中载流子的浓度是一定的,载流子的浓度是一定的,并且自由电子与空穴的浓度相等。并且自由电子与空穴的浓度相等。本征半导体中本征半导体中载流子的浓度公式:载流子的浓度公式:T=300 K室温下室温下,本征硅的电子和空穴浓度本征硅的电子和空穴浓度:n=p=1.431010/cm3本征锗的电子和空穴浓度本征锗的电子和空穴浓度:n=p=2.381013/cm3ni=pi=K1T3/2 e-EGO/(2KT)本征本征激发激发复合复合动态平衡动态平衡 3.1.4 杂质半导体杂质半导体 在本征半导体中掺入某些微量元素作为杂质,在本征半导体中掺入某
6、些微量元素作为杂质,可使半导体的导电性发生显著变化。掺入的杂质可使半导体的导电性发生显著变化。掺入的杂质主要是三价或五价元素。掺入杂质的本征半导体主要是三价或五价元素。掺入杂质的本征半导体称为称为杂质半导体杂质半导体。N N型半导体型半导体掺入五价杂质元素(如磷)的掺入五价杂质元素(如磷)的半导体。半导体。P P型半导体型半导体掺入三价杂质元素(如硼)的掺入三价杂质元素(如硼)的半导体。半导体。1.N1.N型半导体型半导体 3.1.4 杂质半导体杂质半导体 因五价杂质原子中因五价杂质原子中只有四个价电子能与周只有四个价电子能与周围四个半导体原子中的围四个半导体原子中的价电子形成共价键,而价电子
7、形成共价键,而多余的一个价电子因无多余的一个价电子因无共价键束缚而很容易形共价键束缚而很容易形成自由电子。成自由电子。在在N N型半导体中型半导体中自由自由电子是多数载流子,电子是多数载流子,它主要由杂质原它主要由杂质原子提供;子提供;空穴是少数载流子,空穴是少数载流子,由热激发形成。由热激发形成。提供自由电子的五价杂质原子因带正电荷而成为提供自由电子的五价杂质原子因带正电荷而成为正离子正离子,因此五价杂质原子也称为因此五价杂质原子也称为施主杂质施主杂质。2.P2.P型半导体型半导体 3.1.4 杂质半导体杂质半导体 因三价杂质原子因三价杂质原子在与硅原子形成共价在与硅原子形成共价键时,缺少一
8、个价电键时,缺少一个价电子而在共价键中留下子而在共价键中留下一个空穴。一个空穴。在在P P型半导体中型半导体中空穴是多数载流子,空穴是多数载流子,它主要由掺杂形成;它主要由掺杂形成;自由自由电子是少数载流子,电子是少数载流子,由热激发形成。由热激发形成。空穴很容易俘获电子,使杂质原子成为空穴很容易俘获电子,使杂质原子成为负离子负离子。三价杂质。三价杂质 因而也称为因而也称为受主杂质受主杂质。3.杂质对半导体导电性的影响杂质对半导体导电性的影响 3.1.4 杂质半导体杂质半导体 掺入杂质对本征半导体的导电性有很大的影掺入杂质对本征半导体的导电性有很大的影响,一些典型的数据如下响,一些典型的数据如
9、下:T=300 K室温下室温下,本征硅的电子和空穴浓度本征硅的电子和空穴浓度:n=p=1.41010/cm31 本征硅的原子浓度本征硅的原子浓度:3以上三个浓度基本上依次相差约以上三个浓度基本上依次相差约106/cm3。2掺杂后掺杂后 N 型半导体中的自由电子浓度型半导体中的自由电子浓度:n=51016/cm3 4.961022/cm3 本征半导体、杂质半导体本征半导体、杂质半导体 本节中的有关概念本节中的有关概念 自由电子、空穴自由电子、空穴 N N型半导体、型半导体、P P型半导体型半导体 多数载流子、少数载流子多数载流子、少数载流子 施主杂质、受主杂质施主杂质、受主杂质end3.2 PN
10、结的形成及特性结的形成及特性 3.2.1 PN结的形成结的形成 3.2.3 PN结的单向导电性结的单向导电性 3.2.4 PN结的反向击穿结的反向击穿 3.2.5 PN结的电容效应结的电容效应 3.2.2 载流子的漂移与扩散载流子的漂移与扩散 在一块半导体单晶上一侧掺杂成为在一块半导体单晶上一侧掺杂成为 P 型半导体,另型半导体,另一侧掺杂成为一侧掺杂成为 N 型半导体,两个区域的交界处就形成了型半导体,两个区域的交界处就形成了一个特殊的薄层,一个特殊的薄层,称为称为 PN 结结。PNPN结结图图 PN 结的形成结的形成3.2.1 PN 3.2.1 PN 结的形成结的形成 3.2.2 载流子的
11、漂移与扩散载流子的漂移与扩散漂移运动:漂移运动:由电场作用引起的载流子的运动称为由电场作用引起的载流子的运动称为漂移运动漂移运动。扩散运动:扩散运动:由载流子浓度差引起的载流子的运动称为由载流子浓度差引起的载流子的运动称为扩散扩散运动运动。PN 结中载流子的运动结中载流子的运动耗尽层耗尽层空间电荷区空间电荷区PN1.扩散运动扩散运动2.扩散运动扩散运动形成空间电荷区形成空间电荷区电 子 和 空 穴电 子 和 空 穴浓度差形成浓度差形成多数多数载流子的扩散运载流子的扩散运动。动。PN 结,耗结,耗尽层。尽层。PN(动画1-3)3.空间电荷区产生内电场空间电荷区产生内电场PN空间电荷区空间电荷区内
12、电场内电场Uho空间电荷区正负离子之间电位差空间电荷区正负离子之间电位差 Uho 电位壁垒电位壁垒;内电场内电场;内电场阻止多子的扩散;内电场阻止多子的扩散 阻挡层阻挡层。4.漂移运动漂移运动内电场有利内电场有利于少子运动于少子运动漂漂移。移。少子的运动少子的运动与多子运动方向与多子运动方向相反相反 阻挡层阻挡层5.扩散与漂移的动态平衡扩散与漂移的动态平衡扩散运动使空间电荷区增大,扩散电流逐渐减小;扩散运动使空间电荷区增大,扩散电流逐渐减小;随着内电场的增强,漂移运动逐渐增加;随着内电场的增强,漂移运动逐渐增加;当扩散电流与漂移电流相等时,当扩散电流与漂移电流相等时,PN 结总的电流等结总的电
13、流等于零,空间电荷区的宽度达到稳定。于零,空间电荷区的宽度达到稳定。即即扩散运动与漂移运动达到动态平衡。扩散运动与漂移运动达到动态平衡。PN 在一块本征半导体两侧通过扩散不同的杂质在一块本征半导体两侧通过扩散不同的杂质,分别形成分别形成N N型半导体和型半导体和P P型半导体。此时将在型半导体。此时将在N N型半型半导体和导体和P P型半导体的结合面上形成如下物理过程型半导体的结合面上形成如下物理过程:因浓度差因浓度差 空间电荷区形成内电场空间电荷区形成内电场 内电场促使少子漂移内电场促使少子漂移 内电场阻止多子扩散内电场阻止多子扩散 最后最后,多子的多子的扩散扩散和少子的和少子的漂移漂移达到
14、达到动态平衡动态平衡。多子的扩散运动多子的扩散运动 由由杂质离子形成空间电荷区杂质离子形成空间电荷区 1.外加正向电压时处于导通状态外加正向电压时处于导通状态又称正向偏置,简称正偏。又称正向偏置,简称正偏。外电场方向外电场方向内电场方向内电场方向耗尽层耗尽层VRI空间电荷区变窄,有利空间电荷区变窄,有利于扩散运动,电路中有于扩散运动,电路中有较大的正向电流。较大的正向电流。图图 1.1.6PN什么是什么是PN结的单向结的单向导电性?导电性?有什么作用?有什么作用?在在 PN 结加上一个很小的正向电压,即可得到较大的结加上一个很小的正向电压,即可得到较大的正向电流,为防止电流过大,可接入电阻正向
15、电流,为防止电流过大,可接入电阻 R。2.外加反向电压时处于截止状态外加反向电压时处于截止状态(反偏反偏)反向接法时,外电场与内电场的方向一致,增强了内反向接法时,外电场与内电场的方向一致,增强了内电场的作用;电场的作用;外电场使空间电荷区变宽;外电场使空间电荷区变宽;不利于扩散运动,有利于漂移运动,漂移电流大于扩不利于扩散运动,有利于漂移运动,漂移电流大于扩散电流,电路中产生反向电流散电流,电路中产生反向电流 I;由于少数载流子浓度很低,反向电流数值非常小。由于少数载流子浓度很低,反向电流数值非常小。耗尽层耗尽层图图 1.1.7PN 结加反相电压时截止结加反相电压时截止 反向电流又称反向电流
16、又称反向饱和电流反向饱和电流。对温度十分敏感对温度十分敏感,随着温度升高,随着温度升高,IS 将急剧增大将急剧增大。PN外电场方向外电场方向内电场方向内电场方向VRIS 当当 PN 结正向偏置时,回路中将产生一个较大的结正向偏置时,回路中将产生一个较大的正向电流,正向电流,PN 结处于结处于 导通状态导通状态;当当 PN 结反向偏置时,回路中反向电流非常小,结反向偏置时,回路中反向电流非常小,几乎等于零,几乎等于零,PN 结处于结处于截止状态截止状态。(动画1-4)(动画1-5)综上所述:综上所述:可见,可见,PN 结具有结具有单向导电性单向导电性。(3)PN(3)PN结结V V-I I 特性
展开阅读全文