人教版高中数学选修4-5课件:3.2一般形式的柯西不等式 .ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《人教版高中数学选修4-5课件:3.2一般形式的柯西不等式 .ppt》由用户(金钥匙文档)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版高中数学选修4-5课件:3.2一般形式的柯西不等式 人教版 高中数学 选修 课件 3.2 一般 形式 不等式 下载 _人教A版_数学_高中
- 资源描述:
-
1、二 一般形式的柯西不等式,【自主预习】 1.三维形式的柯西不等式 设a1,a2,a3,b1,b2,b3是实数,则(a12+a22+a32)(b12+b22+ b32)_,当且仅当_或存 在一个数k,使得ai=kbi(i=1,2,3)时等号成立.,(a1b1+a2b2+a3b3)2,bi=0(i=1,2,3),2.一般形式的柯西不等式 设a1,a2,a3,an,b1,b2,b3,bn是实数, 则(a12+a22+an2)(b12+b22+bn2) _,当且仅当_ 或存在一个数k,使得ai=_(i=1,2,n)时,等号成立.,(a1b1+a2b2+anbn)2,bi=0(i=1,2,n),kbi,
2、【即时小测】 1.若a12+a22+a32=4,b12+b22+b32=9,则a1b1+a2b2+a3b3的最大值为 ( ) A.4 B.6 C.9 D.3,【解析】选B.根据柯西不等式,知(a1b1+a2b2+a3b3)2 (a12+a22+a32)(b12+b22+b32)=36,所以-6a1b1+a2b2 + a3b36.,2.已知x,y,z,aR,且x2+4y2+z2=6,则使不等式 x+2y+3za恒成立的a的最小值为 ( ) A.6 B. C.8 D.,【解析】选B.由x2+4y2+z2=6,利用柯西不等式可得 (x+2y+3z)2(x2+4y2+z2)(12+12+32)=66,
3、故有 x+2y+3z ,当且仅当 时,取等号. 再根据不等式x+2y+3za恒成立,可得a,3.已知a,b,cR,a+2b+3c=6,则a2+4b2+9c2的最小值为_. 【解析】因为(a2+4b2+9c2)(1+1+1)(a+2b+3c)2, 所以a2+4b2+9c212. 答案:12,【知识探究】 探究点 一般形式的柯西不等式 1.三维形式的柯西不等式中等号成立的条件写成 可以吗? 提示:不可以.因为若出现bi=0(i=1,2,3)的情况,则分 式不成立了,但是,可以利用分式的形式来形象地记忆.,2.在一般形式的柯西不等式中,等号成立的条件记为ai=kbi(i=1,2,3,n),可以吗?
4、提示:不可以.若bi=0,而ai0,则k不存在.,【归纳总结】 1.对柯西不等式一般形式的说明 一般形式的柯西不等式是二维形式、三维形式、四维形式的柯西不等式的归纳与推广,其特点可类比二维形式的柯西不等式来总结,左边是平方和的积,右边是积的和的平方.在使用时,关键是构造出符合柯西不等式的结构形式.,2.等号成立的条件 ai=kbi(i=1,2,n)或bi=0,即: = = 或b1=b2=bn=0.,3.柯西不等式的两个变式 (1)设aiR,bi0(i=1,2,n), , 当且仅当bi=ai时等号成立. (2)设ai,bi同号且不为0(i=1,2,n),则 ,当且仅当bi=ai时,等号成立.,类
展开阅读全文