新教材高中数学141第1课时空间中点、直线和平面的向量表示及空间中直线、平面的平行课件人教版必修一.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《新教材高中数学141第1课时空间中点、直线和平面的向量表示及空间中直线、平面的平行课件人教版必修一.pptx》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新教材 高中数学 141 课时 空间 中点 直线 和平 向量 表示 平面 平行 课件 人教版 必修 下载 _其他版本_数学_高中
- 资源描述:
-
1、1.4.1用空间向量研究直线、平面的 位置关系第1课时空间中点、直线和平面的向量 表示及空间中直线、平面的平行激趣诱思知识点拨牌楼与牌坊类似,是中国传统建筑之一,最早见于周朝.在园林、寺观、宫苑、陵墓和街道常有建造.旧时牌楼主要有木、石、木石、砖木、琉璃几种,多设于要道口.牌楼中有一种有柱门形构筑物,一般较高大.如图,牌楼的柱子与地面是垂直的,如果牌楼上部的下边线与柱子垂直,我们就能知道下边线与地面平行.这是为什么呢?激趣诱思知识点拨一、空间中点、直线和平面的向量表示1.点的位置向量激趣诱思知识点拨式和式都称为空间直线的向量表示式.由此可知,空间任意直线由直线上一点及直线的方向向量唯一确定.激
2、趣诱思知识点拨微练习1下列说法中正确的是()A.直线的方向向量是唯一的B.与一个平面的法向量共线的非零向量都是该平面的法向量C.直线的方向向量有两个D.平面的法向量是唯一的答案:B 解析:由平面法向量的定义可知,B项正确.激趣诱思知识点拨3.空间平面的向量表示式 激趣诱思知识点拨4.平面的法向量如图,直线l,取直线l的方向向量a,我们称向量a为平面的法向量.给定一个点A和一个向量a,那么过点A,且以向量a为法向量的平面完全确定,可以表示为集合激趣诱思知识点拨名师点析1.空间中,一个向量成为直线l的方向向量,必须具备以下两个条件:是非零向量;向量所在的直线与l平行或重合.激趣诱思知识点拨微练习2
3、若直线l过点A(-1,3,4),B(1,2,1),则直线l的一个方向向量可以是()答案:D 激趣诱思知识点拨微练习3 A.(-1,2,-1)B.(1,2,1)C.(1,2,-1)D.(-1,2,1)答案:A 令x=-1,则y=2,z=-1.即平面ABC的一个法向量为n=(-1,2,-1).激趣诱思知识点拨二、空间中直线、平面平行的向量表示 激趣诱思知识点拨名师点析1.空间平行关系的本质是线线平行,根据共线向量定理,只需证明直线的方向向量12.此外,证明线面平行也可用共面向量定理,即只要证明这条直线的方向向量能够用平面内两个不共线向量线性表示即可.2.利用直线的方向向量证明直线与直线平行、直线与
4、平面平行时,要注意向量所在的直线与所证直线或平面无公共点,证明平面与平面平行时也要注意两平面没有公共点.激趣诱思知识点拨微练习1若两条直线的方向向量分别是a=(2,4,-5),b=(-6,x,y),且两条直线平行,则x=,y=.微练习2若平面外的一条直线l的方向向量是u=(-1,2,-3),平面的法向量为n=(4,-1,-2),则l与的位置关系是.答案:-1215 答案:平行解析:因为un=(-1,2,-3)(4,-1,-2)=0,所以un.所以直线与平面平行,即l.探究一探究二探究三探究四素养形成当堂检测平面法向量及其求法平面法向量及其求法例1如图,在四棱锥P-ABCD中,底面ABCD是正方
5、形,侧棱PD底面ABCD,PD=DC=1,E是PC的中点,求平面EDB的一个法向量.思路分析首先建立空间直角坐标系,然后利用待定系数法按照平面法向量的求解步骤进行求解.探究一探究二探究三探究四素养形成当堂检测解:如图所示建立空间直角坐标系.依题意可得D(0,0,0),P(0,0,1),探究一探究二探究三探究四素养形成当堂检测反思感悟利用待定系数法求平面法向量的步骤(1)设平面的法向量为n=(x,y,z).(2)找出(求出)平面内的两个不共线的向量的坐标a=(a1,b1,c1),b=(a2,b2,c2).(4)解方程组,取其中的一个解,即得法向量.探究一探究二探究三探究四素养形成当堂检测延伸探究
6、本例条件不变,你能分别求出平面PAD与平面PCD的一个法向量吗?它们之间的关系如何?解:如同例题建系方法,易知平面PAD的一个法向量为n1=(0,1,0),平面PCD的一个法向量为n2=(1,0,0),因为n1n2=0,所以n1n2.探究一探究二探究三探究四素养形成当堂检测变式训练1如图所示,已知四边形ABCD是直角梯形,ADBC,ABC=90,SA平面ABCD,SA=AB=BC=1,AD=,试建立适当的坐标系.(1)求平面ABCD的一个法向量;(2)求平面SAB的一个法向量;(3)求平面SCD的一个法向量.探究一探究二探究三探究四素养形成当堂检测解:以点A为原点,AD、AB、AS所在的直线分
7、别为x轴、y轴、z轴,建立如图所示的空间直角坐标系,探究一探究二探究三探究四素养形成当堂检测利用向量方法证明线线平行利用向量方法证明线线平行例2在长方体ABCD-A1B1C1D1中,AB=4,AD=3,AA1=2,点P,Q,R,S分别是AA1,D1C1,AB,CC1的中点.求证:PQRS.证明:(方法1)以点D为原点,DA,DC,DD1所在直线分别为x轴,y轴,z轴,建立如图所示的空间直角坐标系Dxyz.探究一探究二探究三探究四素养形成当堂检测反思感悟要证明两直线平行,可先求出两直线的方向向量,然后证明两直线的方向向量共线,从而证明两直线平行.探究一探究二探究三探究四素养形成当堂检测变式训练2
展开阅读全文
链接地址:https://www.163wenku.com/p-4179401.html