数学选修2 3:离散型随机变量的数学期望课件.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《数学选修2 3:离散型随机变量的数学期望课件.pptx》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学选修2 3:离散型随机变量的数学期望课件 数学 选修 离散 随机变量 期望 课件
- 资源描述:
-
1、-1-2 2.3 3随机变量的数字特征随机变量的数字特征-2-2 2.3 3.1 1离散型随机变量的数学期望1.理解取有限值的离散型随机变量的均值或数学期望的概念.2.会求离散型随机变量的数学期望.3.会利用数学期望分析和解决一些实际问题.121.期望一般地,设一个离散型随机变量X所有可能取的值是x1,x2,xn,这些值对应的概率是p1,p2,pn,则E(X)=x1p1+x2p2+xnpn叫做这个离散型随机变量X的均值或数学期望(简称期望).离散型随机变量的数学期望刻画了这个离散型随机变量的平均取值水平.12名师点拨名师点拨 离散型随机变量的分布列从概率的角度指出了离散型随机变量的分布规律,但
2、不能明显反映离散型随机变量取值的平均水平.而数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平,不过这个平均数不是通过一次或几次试验就可以得到的,而是在大量的重复试验中表现出来的一个相对比较稳定的值,即数学期望表示离散型随机变量在随机试验中取值的平均值,它是概率意义下的平均值,不同于相应数值的算术平均数.归纳总结归纳总结求离散型随机变量X的期望E(X)的步骤:(1)理解随机变量X的意义,写出X可能取的全部值;(2)求X取每个值的概率;(3)写出X的分布列;(4)由公式求期望E(X).12【做一做1-1】已知随机变量X的分布列为则其数学期望E(X)等于()解析:由数学期望
3、的定义,有E(X)=10.5+30.3+50.2=2.4.答案:D12【做一做1-2】一个篮球运动员投篮1次得3分的概率为a,得2分的概率为b,不得分的概率为c,且a,b,c(0,1),若他投篮一次得分的数学期望为1(不分其他得分情况),则ab的最大值为()答案:B 122.常见的数学期望(1)若离散型随机变量X服从参数为p的二点分布,则E(X)=p.(2)若离散型随机变量X服从参数为n和p的二项分布,则E(X)=np.(3)若离散型随机变量X服从参数为N,M,n的超几何分布,则【做一做2】同时掷两枚均匀的硬币100次,设两枚硬币都出现正面的次数为,则E()=.解析:掷两枚均匀的硬币,两枚硬币
4、正面都向上的概率为 ,根据二项分布的期望公式得E()=100 =25.答案:251.离散型随机变量的期望有哪些性质?剖析若X,Y是两个随机变量,且Y=aX+b,则有E(Y)=aE(X)+b,即随机变量X的线性函数的数学期望等于这个随机变量期望E(X)的同一线性函数.特别地:(1)当a=0时,E(b)=b,即常数的数学期望就是这个常数本身.(2)当a=1时,E(X+b)=E(X)+b,即随机变量X与常数之和的数学期望等于X的期望与这个常数的和.(3)当b=0时,E(aX)=aE(X),即常数与随机变量乘积的数学期望等于这个常数与随机变量期望的乘积.2.如何证明二项分布的期望公式E(X)=np?剖
展开阅读全文