北师大版八年级数学上册第一章《勾股定理》优质课件.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《北师大版八年级数学上册第一章《勾股定理》优质课件.pptx》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 勾股定理 北师大 八年 级数 上册 第一章 优质 课件 下载 _八年级上册_北师大版(2024)_数学_初中
- 资源描述:
-
1、第一章 勾股定理回顾与思考 勾股定理,我们把它称为世界第一定理 首先,勾股定理是数形结合的最典型的代表;其次,正是由于勾股定理的发现,导致无理数的发现,引发了数学的第一次危机,这一点,我们将在实数一章里讲到;第三,勾股定理中的公式是第一个不定方程,有许许多多的数满足这个方程,也是有完整解答的最早的不定方程,最为著名的就是费马大定理,直到1995年,数学家怀尔斯才将它证明1.勾股定理:如果直角三角形两直角边分别为a,b,斜边为c,那么_.知识要点2.勾股定理各种表达式:在RtABC中,C=90,A,B,C的对边也分别为a,b,c,则c=_,b=_,a=_.3.勾股定理的逆定理:在ABC中,若a、
2、b、c三边满足_,则ABC为_.4.勾股数:满足_的三个_,称为勾股数.5.几何体上的最短路程是将立体图形的_展开,转化为_上的路程问题,再利用_两点之间,_,解决最短线路问题.6.直角三角形的边、角之间分别存在着什么关系?7.举例说明,如何判断一个三角形是直角三角形8.通过前面问题的交流,试着自己建立本章的知识结构图 三边的关系-勾股定理历史、应用直角三角形 直角三角形的判别应用已知直角三角形的两边长分别为3、4,求第三边长的平方.解:(1)当两直角边为3和4时,第三边长的平方为25;(2)当斜边为4,一直角边为3时,第三边长的平方为7探究一:利用勾股定理求边长1求出下列各图中阴影部分的面积
3、探究二:利用勾股定理求图形面积ABC222222211S2241()()41()41(1410)424.abababababc解:探究三:利用勾股定理逆定理判定ABC的形状或求角度A B港有甲、乙两艘渔船,若甲船沿北偏东60o方向以每小时8 n mile的速度前进,乙船沿南偏东某个角度以每小时15 n mile的速度前进,2 h后,甲船到M岛,乙船到P岛,两岛相距34 n mile,你知道乙船是沿哪个方向航行的吗?探究四:勾股定理及逆定理的综合应用 我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图1)图2由“弦图”变化得到,它是由八个全等的直角三角形拼接而成记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,若S1+S2+S3=10,则S2的值是 拓展提升1.本章知识要点及在学习中用到了哪些数学思想方法?2.你在学习过程中是否积极参与?是否与同伴进行了有效的合作交流?作业:1.课本复习题2.一个正方体物体沿斜坡向下滑动,其截面如图所示正方形DEFH的边长为2 m,坡角A30,B90,BC6 m当正方形DEFH运动到什么位置,即当AE m时,有DC2AE2BC2
展开阅读全文