人工智能-谓词逻辑(-43张)课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《人工智能-谓词逻辑(-43张)课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人工智能 谓词 逻辑 43 课件
- 资源描述:
-
1、谓词逻辑基础谓词逻辑基础一阶逻辑一阶逻辑l基本概念基本概念l个体词:表示主语的词个体词:表示主语的词l谓词:刻画个体性质或个体之间关系的词谓词:刻画个体性质或个体之间关系的词l量词:表示数量的词量词:表示数量的词l小王是个工程师。小王是个工程师。l8是个自然数。是个自然数。l我去买花。我去买花。l小丽和小华是朋友。小丽和小华是朋友。其中,其中,“小王小王”、“工程师工程师”、“我我”、“花花”、“8”、“小丽小丽”、“小华小华”都是个体词,而都是个体词,而“是个工程师是个工程师”、“是个自然数是个自然数”、“去买去买”、“是朋友是朋友”都是谓词。显然前两个谓词表示的是事物都是谓词。显然前两个谓
2、词表示的是事物的性质,第三个谓词的性质,第三个谓词“去买去买”表示的一个动作也表示了主、宾两表示的一个动作也表示了主、宾两个个体词的关系,最后一个谓词个个体词的关系,最后一个谓词“是朋友是朋友”表示两个个体词之间表示两个个体词之间的关系。的关系。谓词逻辑基础谓词逻辑基础谓词逻辑基础谓词逻辑基础l例如:(例如:(1)所有的人都是要死的。)所有的人都是要死的。l (2)有的人活到一百岁以上。有的人活到一百岁以上。在个体域在个体域D为人类集合时,可符号化为:为人类集合时,可符号化为:(1)xPxP(x x),其中,其中P P(x x)表示表示x x是要死的。是要死的。(2)x Qx Q(x x),)
3、,其中其中Q Q(x x)表示表示x x活到一百岁以上。活到一百岁以上。在个体域在个体域D是全总个体域时,是全总个体域时,引入特殊谓词引入特殊谓词R R(x x)表示表示x x是人,可符号化为:是人,可符号化为:(1 1)x x(R R(x x)P P(x x)),其中,其中,R R(x x)表示表示x x是人;是人;P P(x x)表示表示x x是要死的。是要死的。(2 2)x x(R R(x x)Q Q(x x)),),其中,其中,R R(x x)表示表示x x是人;是人;Q Q(x x)表示表示x x活到一百岁以上。活到一百岁以上。一阶逻辑一阶逻辑l公式及其解释公式及其解释l个体常量:个
4、体常量:a,b,cl个体变量:个体变量:x,y,zl谓词符号:谓词符号:P,Q,Rl量词符号:量词符号:,谓词逻辑基础谓词逻辑基础量词否定等值式:量词否定等值式:l(x x )P P(x x)(y y )P P(y y)l(x x )P P(x x)(y y )P P(y y)量词分配等值式:量词分配等值式:l(x x )(P P(x x)Q Q(x x))()(x x )P P(x x)(x x )Q Q(x x)l(x x )(P P(x x)Q Q(x x))()(x x )P P(x x)(x x )Q Q(x x)消去量词等值式:消去量词等值式:设个体域为有穷集合(设个体域为有穷集合
5、(a a1 1,a,a2 2,a an n)l(x x )P P(x x)P P(a a1 1 )P P(a a2 2 )P P(a an n )l(x x )P P(x x)P P(a a1 1 )P P(a a2 2 )P P(a an n )谓词逻辑基础谓词逻辑基础量词辖域收缩与扩张等值式:量词辖域收缩与扩张等值式:l(x x )(P P(x x)Q Q)()(x x )P P(x x)Q Ql(x x )(P P(x x)Q Q)()(x x )P P(x x)Q Q l(x x )(P P(x x)Q Q)()(x x )P P(x x)Q Q l(x x )(Q Q P P(x x
6、))Q Q (x x )P P(x x)l(x x )(P P(x x)Q Q)()(x x )P P(x x)Q Ql(x x )(P P(x x)Q Q)()(x x )P P(x x)Q Q l(x x )(P P(x x)Q Q)()(x x )P P(x x)Q Q l(x x )(Q Q P P(x x))Q Q (x x )P P(x x)谓词逻辑基础谓词逻辑基础谓词逻辑基础谓词逻辑基础SKOLEMSKOLEM标准形标准形l前束范式前束范式定义定义:说公式:说公式A A是一个前束范式,如果是一个前束范式,如果A A中中的一切量词都位于该公式的最左边(不含否的一切量词都位于该公式的
7、最左边(不含否定词),且这些量词的辖域都延伸到公式的定词),且这些量词的辖域都延伸到公式的末端。末端。谓词逻辑归结原理谓词逻辑归结原理即:即:把所有的量词都提到前面去,然后消把所有的量词都提到前面去,然后消掉所有量词掉所有量词(Q(Q1 1x x1 1)(Q)(Q2 2x x2 2)(Q(Qn nx xn n)M(x)M(x1 1,x,x2 2,x,xn n)约束变项换名规则:约束变项换名规则:l(Qx(Qx )MM(x x)(QyQy )MM(y y)l(Qx(Qx )MM(x,zx,z)(QyQy )MM(y,zy,z)谓词逻辑归结原理谓词逻辑归结原理l l l l l l l l l l
8、 l l l l l l l l l l l l l l l ll量词消去原则:量词消去原则:消去存在量词消去存在量词“”,略去全程量词,略去全程量词“”。注意:注意:左边有全程量词的存在量词,消去左边有全程量词的存在量词,消去时该变量改写成为全程量词的函数;如没时该变量改写成为全程量词的函数;如没有,改写成为常量。有,改写成为常量。谓词逻辑归结原理谓词逻辑归结原理l l l l l l l l l l l l l l l l l l l l l l l l l llSkolemSkolem定理定理:谓词逻辑的任意公式都可以化为与之等价谓词逻辑的任意公式都可以化为与之等价的前束范式,但其前束范
9、式不唯一。的前束范式,但其前束范式不唯一。lSKOLEMSKOLEM标准形定义:标准形定义:消去量词后的谓词公式。消去量词后的谓词公式。注意注意:谓词公式:谓词公式G G的的SKOLEMSKOLEM标准形同标准形同G G并并不等值不等值。谓词逻辑归结原理谓词逻辑归结原理例:例:将下式化为将下式化为Skolem标准形:标准形:(x)(y)P(a,x,y)(x)(y)Q(y,b)R(x)l解:第一步,消去解:第一步,消去号,得:号,得:(x)(y)P(a,x,y)(x)(y)Q(y,b)R(x)l第二步,深入到量词内部,得:第二步,深入到量词内部,得:(x)(y)P(a,x,y)(x)x)(y)Q
10、(y,b)R(x)l第三步,变元易名,得第三步,变元易名,得(x)(y)P(a,x,y)(u)(v)(Q(v,b)R(u)l第四步,存在量词左移,直至所有的量词移到前面,第四步,存在量词左移,直至所有的量词移到前面,(x)(y)(u)(v)(P(a,x,y)(Q(v,b)R(u)由此得到前述范式由此得到前述范式l第五步,消去第五步,消去“”(存在量词),略去(存在量词),略去“”全称量全称量词词l消去消去(y),因为它左边只有,因为它左边只有(x),所以使用,所以使用x的函数的函数f(x)代替之,这样得到:代替之,这样得到:(x)(u)(v)(P(a,x,f(x)Q(v,b)R(u)l消去消去
11、(u),同理使用,同理使用g(x)代替之,这样得到:代替之,这样得到:(x)(v)(P(a,x,f(x)Q(v,b)R(g(x)l则,略去全称变量,原式的则,略去全称变量,原式的Skolem标准形为:标准形为:P(a,x,f(x)Q(v,b)R(g(x)l子句与子句集子句与子句集l文字:不含任何连接词的谓词公式。文字:不含任何连接词的谓词公式。l子句:一些文字的析取(谓词的和)。子句:一些文字的析取(谓词的和)。l子句集子句集S S的求取:的求取:G G SKOLEM SKOLEM标准形标准形 消去存在变量消去存在变量 以以“,”取代取代“”,并表示为集合形式,并表示为集合形式 。谓词逻辑归结
12、原理谓词逻辑归结原理l G是不可满足的是不可满足的 S是不可满足的是不可满足的lG与与S不等价,但在不可满足得意义下是一致的。不等价,但在不可满足得意义下是一致的。l定理:定理:若若G是给定的公式,而是给定的公式,而S是相应的子句集,则是相应的子句集,则G是是不可满足的不可满足的 S是不可满足的。是不可满足的。注意注意:G真不一定真不一定S真,而真,而S真必有真必有G真。真。即:即:S=G谓词逻辑归结原理谓词逻辑归结原理lG=GG=G1 1 G G2 2 G G3 3 G Gn n 的子句形的子句形lG G的字句集可以分解成几个单独处理。的字句集可以分解成几个单独处理。l有有 S SG G=S
13、=S1 1 U SU S2 2 U S U S3 3 U U U SU Sn n则则S SG G 与与 S S1 1 U SU S2 2 U S U S3 3 U U U SU Sn n在不可满足得意义在不可满足得意义上是一致的。上是一致的。即即S SG G 不可满足不可满足 S S1 1 U SU S2 2 U S U S3 3 U U U SU Sn n不可满足不可满足3.3 谓词逻辑归结原理谓词逻辑归结原理例:对所有的例:对所有的x,y,z来说,如果来说,如果y是是x的父亲,的父亲,z又是又是y的的父亲,则父亲,则z是是x的祖父。又知每个人都有父亲,试问对的祖父。又知每个人都有父亲,试问
14、对某个人来说谁是它的祖父?某个人来说谁是它的祖父?求:用一阶逻辑表示这个问题,并建立子句集。求:用一阶逻辑表示这个问题,并建立子句集。解:这里我们首先引入谓词:解:这里我们首先引入谓词:lP(x,y)表示表示x是是y的父亲的父亲lQ(x,y)表示表示x是是y的祖父的祖父lANS(x)表示问题的解答表示问题的解答谓词逻辑归结原理谓词逻辑归结原理对于第一个条件,对于第一个条件,“如果如果x是是y 的父亲,的父亲,y又是又是z 的父亲,则的父亲,则x是是z 的祖父的祖父”,一阶逻辑表达式如下:,一阶逻辑表达式如下:A1:(x)(y)(z)(P(x,y)P(y,z)Q(x,z)S A1:P(x,y)P
15、(y,z)Q(x,z)对于第二个条件:对于第二个条件:“每个人都有父亲每个人都有父亲”,一阶逻辑表达式:,一阶逻辑表达式:A2:(y)(x)P(x,y)S A2:P(f(y),y)对于结论:某个人是它的祖父对于结论:某个人是它的祖父B:(x)(y)Q(x,y)否定后得到子句:否定后得到子句:((x)(y)Q(x,y))ANS(x)SB:Q(x,y)ANS(x)则得到的相应的子句集为:则得到的相应的子句集为:S A1,S A2,SB 谓词逻辑归结原理谓词逻辑归结原理l归结原理正确性的根本在于,找到矛盾归结原理正确性的根本在于,找到矛盾可以肯定不真。可以肯定不真。l方法:方法:l和命题逻辑一样。和
16、命题逻辑一样。l但由于有函数,所以要考虑但由于有函数,所以要考虑合一合一和和置换置换。谓词逻辑归结原理谓词逻辑归结原理l置换:可以简单的理解为是在一个谓词公式中用置换项去置换变置换:可以简单的理解为是在一个谓词公式中用置换项去置换变量。量。l定义:定义:置换是形如置换是形如t1/x1,t2/x2,tn/xn的有限集合。其中,的有限集合。其中,x1,x2,xn是互不相同的变量,是互不相同的变量,t1,t2,tn是不同于是不同于xi的项(常量、变量、函的项(常量、变量、函数);数);ti/xi表示用表示用ti置换置换xi,并且要求,并且要求ti与与xi不能相同,而且不能相同,而且xi不能不能循环地
17、出现在另一个循环地出现在另一个ti中。中。例如例如a/x,c/y,f(b)/z是一个置换。是一个置换。g(y)/x,f(x)/y不是一个置换,不是一个置换,谓词逻辑归结原理谓词逻辑归结原理置换置换置换的合成置换的合成l设设 t1/x1,t2/x2,tn/xn,u1/y1,u2/y2,un/yn,是两个置换。,是两个置换。则则 与与 的合成也是一个置换,记作的合成也是一个置换,记作 。它是从集合。它是从集合t1/x1,t2/x2,tn/xn,u1/y1,u2/y2,un/yn 中删去以下两种元素:中删去以下两种元素:li.当当ti=xi时,删去时,删去ti/xi(i=1,2,n);lIi.当当y
展开阅读全文