化工应用数学课件.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《化工应用数学课件.pptx》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 化工 应用 数学 课件
- 资源描述:
-
1、化工應用數學化工應用數學授課教師:授課教師:郭修伯郭修伯 助理教授助理教授Lecture 3應用數學方程式表達物理現象建立數學模式建立數學模式lThe conservation laws material balance heat balance enery balancelRate equations the relationship between flow rate and driving force in the field of fluid flow heat transfer diffusion of matter建立數學模式建立數學模式lThe conservation laws
2、 material balance heat balance enery balancel(rate of)input-(rate of)output=(rate of)accumulation範例說明範例說明A single-stage mixer settler is to be used for the continuous extractionof benzoic acid from toluene,using water as the extracting solvent.The two streams are fed into a tank A where they are sti
3、rred vigorously,and the mixture is then pumped into tank B where it is allowed to settleinto two layers.The upper toluene layer and the lower water layer areremoved separately,and the problem is to find what proportion of thebenzoic acid has passed into the solvent phase.watertoluene+benzoic acidtol
4、uene+benzoic acidwater+benzoic acid簡化(理想化)簡化(理想化)S m3/s tolueney kg/m3 benzoic acidR m3/s toluenex kg/m3 benzoic acidS m3/s waterR m3/s toluenec kg/m3 benzoic acidRate equation for the extraction efficiency:y=mxMaterial Balance:Input of benzoic acid=output of benzoic acidRc=Rx+SySame method can be a
5、pplied to multi-stages.隨時間變化隨時間變化Funtion of time非穩定狀態非穩定狀態(unsteady state)In unsteady state problems,time enters as a variable and someproperties of the system become functions of time.Similar to the previous example,but now assuming that the mixer isso efficient that the compositions of the two liq
6、uid streams are inequilibrium at all times.A stream leaving the stage is of the samecomposition as that phase in the stage.The state of the system at a general time t,wher x and y are now functions of time.S m3/s tolueney kg/m3 benzoic acidR m3/s toluenex kg/m3 benzoic acidS m3/s waterR m3/s toluene
7、c kg/m3 benzoic acidV1,xV2,yMaterial balance on benzoic acidS m3/s tolueney kg/m3 benzoic acidR m3/s toluenex kg/m3 benzoic acidS m3/s waterR m3/s toluenec kg/m3 benzoic acidV1,xV2,yInput-output=accumulationdtdxVdtdxVSyRxRc21)(單位時間的變化CmVVtmSRxmSRRc21)(lnt=0,x=0tmVVmSRmSRRcx21exp1Mathematical Modelsl
8、Salt accumulation in a stirred tankt=0Tank contains 2 m3 of waterQ:Determine the salt concentration in the tankwhen the tank contains 4 m3 of brineBrineconcentration 20 kg/m3feed rate 0.02 m3/sFlow0.01 m3/s建立數學模式建立數學模式lV and x are function of time tlDuring t:balance of brine balance of saltBrineconc
9、entration 20 kg/m3feed rate 0.02 m3/sBrine0.01 m3/sV m3x kg/m3tdtdVtt01.002.0VxtdtdxxtdtdVVtxt)(01.02002.0解數學方程式解數學方程式lSolvelx=20-20(1+0.005 t)-2lV=2+0.01 t0)0(2)0(01.04.001.0 xVxdtdxVdtdVxdtdVMathematical ModelslMixingPure water3 l/minMixture2 l/minMixture3 l/minMixture4 l/minMixture1 l/minTank 1Ta
10、nk 2t=0Tank 1 contains 150 g of chlorine dissolved in 20 l waterTank 2 contains 50 g of chlorine dissolved in 10 l waterQ:Determine the amount of chlorine in each tank at any time t 0建立數學模式建立數學模式lLet xi(t)represents the number of grams of chlorine in tank i at time t.lTank 1:x1(t)=(rate in)-(rate ou
11、t)lTank 2:x2(t)=(rate in)-(rate out)lMathematical model:x1(t)=3*0+3*x2/10-2*x1/20-4*x1/20 Pure water3 l/minMixture2 l/minMixture3 l/minMixture4 l/minMixture1 l/minTank 1Tank 2x2(t)=4*x1/20-3*x2/10-1*x2/10 50)0(150)0(525110310321212211xxxxdtdxxxdtdx解數學方程式解數學方程式lHow to solve?lUsing MatriceslX=AX;X(0)=
12、X0 where x1(t)=120e-t/10+30e-3t/5 x2(t)=80e-t/10-30e-3t/55015052511031030XandA50)0(150)0(525110310321212211xxxxdtdxxxdtdxMathematical ModelslMass-Spring System Suppose that the upper weight is pulled down one unit and the lower weight is raised one unit,then both weights are released from rest simul
13、taneously at time t=0.Q:Determine the positions of the weights relative totheir equilibruim positions at any time t 0k1=6k3=3k2=2m1=1m2=1y2y1建立數學模式建立數學模式lEquation of motionlweight 1:lweight 2:lMathematical model:m1 y1”(t)=-k1 y1+k2(y2-y1)0)0()0(1)0(1)0(52282121212211yyyyyyyyyyk1=6k3=3k2=2m1=1m2=1y2y
14、1m2 y2”(t)=-k2(y2-y1)-k3 y2 解數學方程式解數學方程式lHow to solve?y1(t)=-1/5 cos(2t)+6/5 cos(3t)y2(t)=-2/5 cos(2t)-3/5 cos(3t)0)0()0(1)0(1)0(52282121212211yyyyyyyyyy隨位置變化隨位置變化Funciotn of positionMathematical ModelslRadial heat transfer through a cylindrical conductorTemperature at a is ToTemperature at b is T1Q
15、:Determine the temperature distributionas a function of r at steady staterr+drab建立數學模式建立數學模式lConsidering the element with thickness rlAssuming the heat flow rate per unit area=QlRadial heat fluxlA homogeneous second order O.D.E.)(22rdrdQQrrrQdrdTkQwhere k is the thermal conductivity022drdTdrTdr解數學方程
16、式解數學方程式lSolve1022)()(0TbTTaTdrdTdrTdr)lnlnlnln)()(010abarTTTrT流場流場(Flow systems)-EulerianlThe analysis of a flow system may proceed from either of two different points of view:Eulerian methodlthe analyst takes a position fixed in space and a small volume element likewise fixed in spacelthe laws of c
17、onservation of mass,energy,etc.,are applied to this stationary systemlIn a steady-state condition:the object of the analysis is to determine the properties of the fluid as a function of position.流場流場(Flow systems)-Lagrangian the analyst takes a position astride a small volume element which moves wit
18、h the fluid.In a steady state condition:lthe objective of the analysis is to determine the properties of the fluid comprising the moving volume element as a function of time which has elapsed since the volume element first entered the system.lThe properties of the fluid are determined solely by the
19、elapsed time(i.e.the difference between the absolute time at which the element is examined and the absolute time at which the element entered the system).In a steady state condition:lboth the elapsed time and the absolute time affect the properties of the fluid comprising the element.Eulerian 範例範例A
20、fluid is flowing at a steady state.Let x denote the distance from theentrance to an arbitrary position measured along the centre line in thedirection of flow.Let Vx denote the velocity of the fluid in the x direction,A denote the area normal to the x direction,and denote thefluid density at point x.
展开阅读全文