高中数学北师大版 必修第二册第一章三角函数综合强化2.docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高中数学北师大版 必修第二册第一章三角函数综合强化2.docx》由用户(后花园)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学北师大版 必修第二册第一章三角函数综合强化2 高中数学 北师大 必修 第二 第一章 三角函数 综合 强化 下载 _必修1_北师大版_数学_高中
- 资源描述:
-
1、高中数学北师大版(2019)必修第二册第一章三角函数综合强化2第I卷(选择题)请点击修改第I卷的文字说明一、单选题1若和是定义在实数集上的函数,且方程有实数解,则不可能是( )ABCD2若对,有,函数在区间上存在最大值和最小值,则其最大值与最小值的和为( )A4B8C12D163已知函数,将的图象向右平移个单位得到函数的图象,点,是与图象的连续相邻的三个交点,若是钝角三角形,则的取值范围是( )ABCD4如图,半径为1的半圆O与等边三角形ABC夹在两平行线之间,与半圆相交于F、G两点,与三角形ABC两边相交于点E、D,设弧FG的长为,若从平行移动到,则函数的图像大致是( )ABCD5函数的最小
2、值是( )ABCD6已知,函数在区间上恰有个极值点,则正实数的取值范围为( )ABCD二、多选题7函数的部分图象如图所示,则下列结论正确的是( )A点是的对称中心B直线是的对称轴C在区间上单调减D的图象向右平移个单位得的图象8已知点是函数的图象的一个对称中心,且的图象关于直线对称,在单调递减,则( )A函数的最小正周期为B函数为奇函数C若的根为,则D若在上恒成立,则的最大值为第II卷(非选择题)请点击修改第II卷的文字说明三、填空题9设.若函数在区间上恰有两个零点,则的取值范围是_.10定义在上的函数满足,且,当时,则函数在区间上所有的零点之和为_.11以下关于函数的结论:函数的图象关于直线对
3、称;函数的最小正周期是;若,则;函数在上的零点个数为20其中所有正确结论的编号为_12关于函数,下列说法正确的是_(将正确的序号写在横线上)(1)是以为周期的函数;(2)当且仅当时,函数取得最小值;(3)图像的对称轴为直线;(4)当且仅当时,.四、解答题13定义:若函数的定义域为D,且存在非零常数,对任意,恒成立,则称为线周期函数,为的线周期.(1)下列函数(其中表示不超过x的最大整数),是线周期函数的是_(直接填写序号);(2)若为线周期函数,其线周期为,求证:为周期函数;(3)若为线周期函数,求的值.14已知函数,.若对于给定的非零常数,存在非零常数使得对于恒成立,则称函数是上的“级类周期
4、函数”,周期为.(1)已知函数是上周期为1的“2级类周期函数”,且当时,求的值(2)已知函数是上周期为1的“级类周期函数”,且当时,.若函数是上的单调递增函数,求实数的取值范围;(3)是否存在非零实数,使得函数是上周期为的“级类周期函数”?若存在,求出实数和的值;若不存在,请说明理由.15己知函数的定义域为,若存在实数,使得对于任意都存在满足,则称函数为“自均值函数”,其中称为的“自均值数”.(1)判断函数是否为“自均值函数”,并说明理由:(2)若函数,为“自均值函数”,求的取值范围;(3)若函数,有且仅有1个“自均值数”,求实数的值.16已知函数,.(1)当时,写出的单调递减区间(不必证明)
5、,并求的值域;(2)设函数,若对任意,总有,使得,求实数t的取值范围.试卷第3页,共4页参考答案1C【分析】由题设令为原方程的解:可得,即可将问题转化为是否有实数解,根据各选项函数,应用数形结合确定正确选项.【详解】设为的实数解,即,令,则.,即为的实数解,有实数解,结合各选项的函数,判断与是否有交点即可,如下图示:由图知:当时无交点,无实数解,故选:C.2B【分析】利用已知条件可得,则为奇函数,构造即可知为奇函数,又由上存在最大、最小值,易知最小、最大值的和为0,即可求最大、最小值的和.【详解】由题设,且,则,为奇函数,令,即是奇函数,在上的最小、最大值的和为0,即,.故选:B【点睛】关键点
6、点睛:由题设求出,构造奇函数,根据区间内存在最值可知,进而求最值的和.3D【分析】由函数图象的平移可得,作出函数的图象,结合三角函数的图象与性质、平面几何的知识即可得出,即可得解.【详解】由条件可得,作出两个函数图象,如图:,为连续三交点,(不妨设在轴下方),为的中点,.由对称性可得是以为顶角的等腰三角形,由,整理得,得,则,所以,要使为钝角三角形,只需即可,由,所以.故选:D.【点睛】关键点点睛:解决本题的关键是准确把握三角函数的图象与性质,合理转化条件,得到关于的不等式,运算即可.4D【分析】根据给定条件求出函数的解析式,再借助函数性质即可判断作答.【详解】依题意,正的高为1,则其边长,如
7、图,连接OF,OG,过O作ONl1于N,交l于点M,过E作EHl1于H,因OF=1,弧FG的长为,则,又,即有,于是得,因此,即,显然在上单调递增,且图象是曲线,排除选项A,B,而,C选项不满足,D选项符合要求,所以函数的图像大致是选项D.故选:D【点睛】方法点睛:函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置(2)从函数的单调性,判断图象的变化趋势(3)从函数的奇偶性,判断图象的对称性(4)从函数的特征点,排除不合要求的图象利用上述方法排除、筛选选项5B【分析】对变形,得到,当时,利用的几何意义求解其取值范围,进而得到,当时,从而求
8、出的最小值.【详解】当,当时,因为,令,的含义是点与单位圆上的点的连线的斜率,所以,所以所以,即,综合得, 故最小值为:.故选:B.6B【分析】先利用向量数量积和三角恒等变换求出 ,函数在区间上恰有个极值点即为三个最值点,解出,再建立不等式求出的范围,进而求得的范围.【详解】解: 令,解得对称轴,又函数在区间恰有个极值点,只需 解得故选:【点睛】本题考查利用向量的数量积运算和三角恒等变换与三角函数性质的综合问题.(1)利用三角恒等变换及辅助角公式把三角函数关系式化成或 的形式; (2)根据自变量的范围确定的范围,根据相应的正弦曲线或余弦曲线求值域或最值或参数范围.7CD【分析】由图知且求,再由
展开阅读全文