专题09导数与不等式的解题技巧[002]参考模板范本.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《专题09导数与不等式的解题技巧[002]参考模板范本.doc》由用户(林田)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 002 专题 09 导数 不等式 解题 技巧 参考 模板 范本
- 资源描述:
-
1、专题09导数与不等式的解题技巧002专题09 导数与不等式的解题技巧一知识点基本初等函数的导数公式 (1)常用函数的导数(C)_(C为常数); (x)_;(x2)_; _;()_(2)初等函数的导数公式(xn)_; (sin x)_;(cos x)_; (ex)_;(ax)_; (ln x)_;(logax)_ 【详解】如图所示,直线l与ylnx相切且与yx1平行时,切点P到直线yx1的距离|PQ|即为所求最小值(lnx),令1,得x1.故P(1,0)由点到直线的距离公式得|PQ|min=,故选C.(三)构造函数证明不等式例3【山东省烟台市2019届高三数学试卷】已知定义在(,0)上的函数f(
2、x),其导函数记为f(x),若成立,则下列正确的是()Af(e)e2f(1)0 BCe2f(e)f(1)0 D【答案】A【分析】由题干知:,x1时,2f(x)xf(x)01x0时,2f(x)xf(x)0构造函数g(x)=,对函数求导可得到x1时,g(x)0;1x0,g(x)0,利用函数的单调性得到结果.练习1设是定义在上的偶函数的导函数,且,当时,不等式恒成立,若,则的大小关系是( )A B C D【答案】D【分析】构造函数,根据函数的奇偶性求得的奇偶性,再根据函数的导数确定单调性,由此比较三个数的大小.【解析】构造函数,由于是偶函数,故是奇函数.由于,故函数在上递增.由于,故当时,当时,.所
3、以,根据单调性有.故,即,故选D.【点睛】本小题主要考查函数的奇偶性,考查构造函数法比较大小,考查化归与转化的数学思想方法,属于中档题.练习2.设函数,的导函数为,且满足,则( )A BC D不能确定与的大小【答案】B【解析】令g(x)=,求出g(x)的导数,得到函数g(x)的单调性,【详解】令g(x)=,则g(x)=,xf(x)3f(x),即xf(x)3f(x)0,g(x)g(),即,则有故选B.练习3.定义在0,+)上的函数满足:其中表示的导函数,若对任意正数都有,则实数的取值范围是()A(0,4 B2,4 C(,0)4,+) D4,+)【答案】C【解析】由可得,令,则,利用导数可得函数在
4、区间上单调递减,从而由原不等式可得,解不等式可得所求范围【详解】,当且仅当且,即时两等号同时成立,“对任意正数都有”等价于“”由可得,令,则,令,则,当时,单调递增;当时,单调递减,函数在区间上单调递减,故由可得,整理得,解得或实数的取值范围是故选C【点睛】本题难度较大,涉及知识点较多解题的关键有两个,一是求出的最小值,在此过程中需要注意基本不等式中等号成立的条件,特别是连续两次运用不等式时要注意等号能否同时成立;二是结合条件中含有导函数的等式构造函数,并通过求导得到函数的单调性,最后再根据单调性将函数不等式转化为一般不等式求解主要考查构造、转化等方法在解题中的应用(四)不等式中存在任意问题例
5、4【安徽省皖南八校2019届高三第二次(12月)联考数学】已知函数,对于,使得,则实数的取值范围是A B C D【答案】D【解析】,使得,可得,利用,的单调性、最值即可求得.【详解】对于,使得,等价于 ,因为是增函数,由复合函数增减性可知在上是增函数,所以当时,令,则, 若时, ,所以只需,解得.若时,所以只需,解得.当时,成立.综上,故选D. 练习1.已知函数,函数(),若对任意的,总存在使得,则实数的取值范围是()A B C D【答案】B【解析】由题意,可得在的值域包含于函数的值域,运用导数和函数的单调性和值域,即可求解.【详解】由题意,函数的导数为,当时,则函数为单调递增;当时,则函数为
6、单调递减,即当时,函数取得极小值,且为最小值,又由,可得函数在的值域,由函数在递增,可得的值域,由对于任意的,总存在,使得,可得,即为,解得,故选B.【点睛】本题主要考查了函数与方程的综合应用,以及导数在函数中的应用,其中解答中转化为在的值域包含于函数的值域,运用导数和函数的单调性和值域是解答的关键,着重考查了分析问题和解答问题的能力,以及推理与运算能力,属于中档试题.练习2函数,若对,则实数的最小值是_ 【答案】14【解析】利用导数以及指数函数的性质,分别求出函数f(x),g(x)的最值,将问题转为求f(x)ming(x)min即可【详解】,在递减,在递增,所以,在单调递增,由已知对,可知只
7、需f(x)ming(x)min即练习3已知函数,且,若存在,使得对任意,恒成立,则的取值范围是_【答案】【解析】存在,使得对任意的,恒成立,即,由在上递增,可得,利用导数可判断在上的单调性,可得,由,可求得的范围;【详解】的定义域为,当时,为增函数,所以;若存在,使得对任意的,恒成立,即,当时,为减函数,故答案为:.【点睛】对于函数恒成立或者有解求参的问题,常用方法有:变量分离,参变分离,转化为函数最值问题;或者直接求函数最值,使得函数最值大于或者小于0;或者分离成两个函数,使得一个函数恒大于或小于另一个函数。(五)数列与不等式例5【湖北省武汉市2019届12月高三数学试题】等差数列的前项和,
8、若,则下列结论正确的是( )A, B,C, D,【答案】A【解析】设f(x)=x3+2 018x判断函数的奇偶性以及函数的单调性,然后判断a8+a2011=2,且a2011a8,推出结果【详解】设f(x)=x3+2 018x,则由f(x)=f(x)知函数f(x)是奇函数由f(x)=3x2+2 0180知函数f(x)=x3+2 018x在R上单调递增因为(a81)3+2 018(a81)=1,(a20111)3+2 018(a20111)=1,所以f(a81)=1,f(a20111)=1,得a81=(a20111),即a8+a2011=2,且a2011a8,所以在等差数列an中,S2018=2
展开阅读全文