中考数学高频热点 第19讲 平行四边形(含多边形)(解析版).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《中考数学高频热点 第19讲 平行四边形(含多边形)(解析版).doc》由用户(cbx170117)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考数学高频热点 第19讲 平行四边形含多边形解析版 中考 数学 高频 热点 19 平行四边形 多边形 解析 下载 _二轮专题_中考复习_数学_初中
- 资源描述:
-
1、第19讲平行四边形(含多边形)1平行四边形 (1)性质: 平行四边形两组对边分别_相等_; 平行四边形对角相等,邻角_互补_; 平行四边形对角线互相_平分_; 平行四边形是_中心_对称图形 (2)判定方法: 定义:两组对边平行且相等的四边形是平行四边形; 两组对边分别_相等_的四边形是平行四边形; 一组对边平行且相等 的四边形是平行四边形; 两组对角 分别相等 的四边形是平行四边形; 对角线互相平分的四边形是平行四边形2多边形及其性质(1)多边形:内角和定理:n边形的内角和等于 (n2)180 ;外角和定理:n边形的外角和为 360;对角线:过n边形的一个顶点可引n3条对角线,n边形共有 条对
2、角线(2)正多边形:正多边形各边相等,各内角相等,各外角相等;正n边形的每一个内角为(n3),每一个外角为;对称性:所有的正多边形都是轴对称图形,正n边形有_n_条对称轴;当n是奇数时,是轴对称图形,不是中心对称图形;当n是偶数时,既是轴对称图形又是中心对称图形.考点1:多边形内角和计算【例题1】在一个多边形中,一个内角相邻的外角与其他各内角的和为600.(1)如果这个多边形是五边形,请求出这个外角的度数;(2)是否存在符合题意的其他多边形?如果存在,请求出边数及这个外角的度数;如果不存在,请说明理由【解析】:(1)设这个外角的度数是x.由题意,得(52)180(180x)x600.解得x12
3、0.故这个外角的度数是120.(2)存在设这个多边形的边数为n,这个外角的度数是x.由题意,得(n2)180(180x)x600.整理,得x57090n.0x180,即057090n180.解得4n6.又n为正整数,n5或n6.当n6时,x30.故这个多边形的边数是6,这个外角的度数为30.归纳:本题注意隐含条件的挖掘,即邻补角和为180及凸多边形的一个内角是小于平角的角考点2:平行四边形的性质与判定 【例题2】(2017大庆)如图,以BC为底边的等腰ABC,点D,E,G分别在BC,AB,AC上,且EGBC,DEAC,延长GE至点F,使得BEBF.(1)求证:四边形BDEF为平行四边形;(2)
4、当C45,BD2时,求D,F两点间的距离【解析】(1)证明:ABC是等腰三角形,ABCC.EGBC,DEAC,AEGABCC,四边形CDEG是平行四边形,DEGCAEG.BEBF,FBEFAEG,FDEG,BFDE.又EGBC,即FEBD,四边形BDEF为平行四边形;(2)解:C45,ABCBFEBEF45,BDE,BEF均是等腰直角三角形,BFBEBD.过点F作FMBD交DB的延长线于点M,连接DF,如解图所示则BFM是等腰直角三角形FMBMBF1,DM3.在RtDFM中,由勾股定理得DF.即D,F两点间的距离为.考点3: 关于平行四边形的综合探究问题【例题3】(2018四川省眉山市15分
5、) 如图,在四边形ABCD中,ACBD于点E,AB=AC=BD,点M为BC中点,N为线段AM上的点,且MB=MN.(1)求证:BN平分ABE; (2)若BD=1,连结DN,当四边形DNBC为平行四边形时,求线段BC的长; (3)如图,若点F为AB的中点,连结FN、FM,求证:MFNBDC. 【答案】(1)证明:AB=AC,ABC=ACB,又M为BC中点,AMBC,在RtABM中,ABC+MAB=90,ACBD,在RtCBE中,ACB+EBC=90,MAB=EBC,又MB=MN,AMBC,NBM为等腰直角三角形,MBN=MNB=45,EBC+NBE=45,MAB+ABN=MNB=45,MAB=E
6、BC,NBE=ABN,BN平分ABE.(2)解:四边形DNBC为平行四边形,设BM=CM=MN=a,则DN=BC=2a,在ABN和DBN中, ABNDBN中(SAS),AN=DN=2a,在RtABM中,BD=1,AB=AC=BD,AB=1,AM2+BM2=AB2 , (2a+a)2+a2=1,解得:a= .BC=2a= .(3)解证明:MB=MN,M为BC中点,MN=MB= BC,又F是AB的中点,AB=AC=BD,在RtABM中,MF=AF=BF= AB= BD,MAB=FMN,由(1)知MAB=EBC,FMN=EBC,又 ,MFNBDC. 一、选择题:1. (2018浙江宁波4分)已知正多
7、边形的一个外角等于40,那么这个正多边形的边数为()A6B7C8D9【答案】D【解答】解:正多边形的一个外角等于40,且外角和为360,则这个正多边形的边数是:36040=9故选:D2. 在平行四边形ABCD中,B=60,那么下列各式中,不能成立的是()AD=60BA=120CC+D=180DC+A=180【答案】D【解答】解:四边形ABCD是平行四边形,A=C,B=D,而B=60,A=C=120,D=60所以D是错误的故选D3. (2018宁波)如图,在ABCD中,对角线AC与BD相交于点O,E是边CD的中点,连结OE若ABC=60,BAC=80,则1的度数为()A50B40C30D20【答
8、案】B【解答】解:ABC=60,BAC=80,BCA=1806080=40,对角线AC与BD相交于点O,E是边CD的中点,EO是DBC的中位线,EOBC,1=ACB=40故选:B4. (2018浙江省台州4分)如图,在ABCD中,AB=2,BC=3以点C为圆心,适当长为半径画弧,交BC于点P,交CD于点Q,再分别以点P,Q为圆心,大于PQ的长为半径画弧,两弧相交于点N,射线CN交BA的延长线于点E,则AE的长是()AB1CD【答案】B【解答】解:由题意可知CF是BCD的平分线,BCE=DCE四边形ABCD是平行四边形,ABCD,DCE=E,BCE=AEC,BE=BC=3,AB=2,AE=BEA
9、B=1,故选:B5. (2018陕西3分)点O是平行四边形ABCD的对称中心,ADAB,E.F分别是AB边上的点,且EFAB;G、H分别是BC边上的点,且GHBC;若S1,S2分别表示EOF和GOH的面积,则S1,S2之间的等量关系是( ).A2S13S2. B2S1S2. C S13S2. D3S12S2.【答案】A【详解】过点O分别作OMBC,垂足为M,作ONAB,垂足为N,点O是平行四边形ABCD的对称中心,S平行四边形ABCD=AB2ON, S平行四边形ABCD=BC2OM,ABON=BCOM,S1=EFON,S2=GHOM,EFAB,GHBC,S1=ABON,S2=BCOM,2S13
展开阅读全文