2020年高考数学(理)满分技巧与限时训练:解析几何(解析版).docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2020年高考数学(理)满分技巧与限时训练:解析几何(解析版).docx》由用户(cbx170117)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020 年高 数学 满分 技巧 限时 训练 解析几何 解析 下载 _二轮专题_高考专区_数学_高中
- 资源描述:
-
1、 热点09 解析几何【命题趋势】解析几何一直是高考数学中的计算量代名词,在高考中所占的比例一直是2+1+1模式.即两道选择,一道填空,一道解答题.高考中选择部分,一道圆锥曲线相关的简单概念以及简单性质,另外一道是圆锥曲线的性质会与直线、圆等结合考查一道综合题目,一般难度诶中等.填空题目也是综合题目,难度中等.大题部分一般是以椭圆抛物线性质为主,加之直线与圆的相关性子相结合,常见题型为定值、定点、对应变量的取值范围问题、面积问题等.双曲线一般不出现在解答题中,一般出现在小题中.即复习解答题时也应是以椭圆、抛物线为主.本专题主要通过对高考中解析几何的知识点的统计,整理了高考中常见的解析几何的题型进
2、行详细的分析与总结,通过本专题的学习,能够掌握高考中解析几何出题的脉略,从而能够对于高考中这一重难点有一个比较详细的认知,对于解析几何的题目的做法能够有一定的理解与应用.【满分技巧】 定值问题:采用逆推方法,先计算出结果.即一般会求直线过定点,或者是其他曲线过定点.对于此类题目一般采用特殊点求出两组直线,或者是曲线然后求出两组直线或者是曲线的交点即是所要求的的定点.算出结果以后,再去写出一般情况下的步骤. 定值问题:一般也是采用利用结果写过程的形式.先求结果一般会也是采用满足条件的特殊点进行带入求值(最好是原点或是(1.0)此类的点).所得答案即是要求的定值.然后再利用答案,写出一般情况下的过
3、程即可.注:过程中比较复杂的解答过程可以不求,因为已经知道答案,直接往答案上凑即可. 关于取值范围问题:一般也是采用利用结果写过程的形式.对于答案的求解,一般利用边界点进行求解,答案即是在边界点范围内.知道答案以后再写出一般情况下的步骤比较好写.一般情况下的步骤对于复杂的计算可以不算.【考查题型】选择,填空,解答题【限时检测】(建议用时:55分钟)1(2019福建三明一中高三月考)已知,为椭圆的左、右焦点,过原点且倾斜角为的直线与椭圆的一个交点为,若,则椭圆的方程是( )ABCD【答案】C【解析】【分析】先由题意,不妨设点位于第一象限,根据,得到,根据与轴正方向的夹角为,得到,从而由求出,得到
4、,联立,即可求出结果.【详解】因为过原点且倾斜角为的直线与椭圆的一个交点为,不妨设点位于第一象限,因为,所以为直角三角形,因此;又与轴正方向的夹角为,所以,即;所以,解得:,所以;因此,又,由解得:,因此所求椭圆方程为.故选:C 【名师点睛】本题主要考查求椭圆的标准方程,熟记椭圆的标准方程,以及椭圆的简单性 质即可,属于常考题型.2(2019贵州高三月考(理)已知抛物线的焦点为F,Q为抛物线上一点,连接并延长交抛物线的准线于点P,且点P的纵坐标为负数,若,则直线PF的方程为( )ABC或D【答案】D【解析】【分析】根据的纵坐标为负数,判断出直线斜率大于零,设直线的倾斜角为,根据抛物线的定义,求
5、得的值,进而求得,从而求得也即直线的斜率,利用点斜式求得直线的方程.【详解】由于的纵坐标为负数,所以直线斜率大于零,由此排除B,C选项.设直线的倾斜角为.作出抛物线和准线的图像如下图所示.作,交准线于点.根据抛物线的定义可知,且.依题意,故在直角三角形中,所以,故直线的斜率为,所以直线的方程为,化简得.故选:D. 【名师点睛】本小题主要考查抛物线的定义,考查直线和抛物线的位置关系,考查数形结合的数学思想方法,属于中档题.3(2019广东实验中学高三月考(理)是方程表示的图形为双曲线的( )A充分不必要条件B必要不充分条件C充要条D既不充分也不必要条件【答案】A【分析】方程表示双曲线,可得,解得
6、m范围即可判断出结论,解得m范围即可判断出结论【详解】由方程表示的图形为双曲线,可得,即即,或, 是方程表示的图形为双曲线的充分不必要条件,故选:A【名师点睛】本题考查了双曲线的标准方程、不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题4 (2019全国高三月考(理)双曲线的右焦点为,以 为圆心的圆与双曲线的两条渐近线相切,则双曲线的方程为( )ABCD【答案】A【解析】【分析】由已知圆的圆心即为焦点,可得的值,利用渐近线和圆相切,列方程求出,即可得双曲线的方程.【详解】由题意知:,有,到的距离为,得,故双曲线的方程为.故选A.【名师点睛】本题考查双曲线的标准方程和性质,
7、考查渐近线方程的应用,考查学生计算能力,是基础题.5(2019广东高三月考(理)已知椭圆的右焦点为,过点的直线交椭圆于、两点.若的中点坐标为,则的方程为( )ABCD【答案】D【解析】设 ,直线的斜率 , ,两式相减得 ,即 ,即 , ,解得: ,方程是,故选D.6(2019安徽高三月考(理)已知是双曲线的右焦点,动点在双曲线左支上,点为圆上一点,则的最小值为( )ABCD【答案】A【解析】【分析】由,的最小值是,转化为求的最小值即为【详解】双曲线中,圆半径为,(当且仅当共线且在间时取等号 ,当且仅当是线段与双曲线的交点时取等号的最小值是9故选:A【名师点睛】本题考查双曲线的标准方程,在涉及到
8、双曲线上的点到焦点的距离时,常常与定义联系,双曲线上点到一个焦点的距离可能转化为到另一个焦点的距离,圆外一点到圆上点的距离的最大值为圆外的点到圆心距离加半径,最小值为圆外的点到圆心距离减半径7(2019河北高三月考(理)在平面直角坐标系中,已知双曲线的左焦点为F,点B的坐标为(0,b),若直线BF与双曲线C的两条渐近线分别交于P,Q两点,且,则双曲线C的离心率为ABCD2【答案】B【解析】【分析】将直线与双曲线渐近线联立,可求得的值;利用可得,将 的值代入,可得,从而求得离心率.【详解】由题可知,则直线方程为又双曲线渐近线方程为由可解得或由可知,由题可知:,则化简得,所以【名师点睛】本题考查双
9、曲线离心率的求解,关键在于能够通过向量的关系得到的齐次方程,通过方程求得离心率.8(2019山东济南外国语学校高考模拟(理)已知,分别为椭圆的左、右焦点,点是椭圆上位于第一象限内的点,延长交椭圆于点,若,且,则椭圆的离心率为( )ABCD【答案】A【分析】设,则,再次利用椭圆的几何性质可 得,利用求得后再利用 为直角三角形得到关于a,c的方程,进而可求得椭圆的离心率.【详解】设,则,因为,故. 因,故,整理得到,即,故选A.【名师点睛】圆锥曲线中离心率的计算,关键是利用题设条件构建关于的一个等式关系而离心率的取值范围,则需要利用坐标的范围、几何量的范围或点的位置关系构建关于的不等式或不等式组二
10、、填空题9(2019山东高三)直线过抛物线的焦点,且与交于 两点,则_,_【答案】2 1 【分析】由题意知,从而,所以抛物线方程为联立方程,利用韦达定理可得结果.【详解】由题意知,从而,所以抛物线方程为当直线AB斜率不存在时:代入,解得,从而当直线AB斜率存在时:设的方程为,联立,整理,得,设,则从而(方法二)利用二级结论:,即可得结果【名师点睛】本题考查抛物线的几何性质,直线与抛物线的位置关系,考查转化能力与计算能力,属于基础题.10(2019浙江高三期中)已知椭圆与双曲线共焦点,F1、F2分别为左、右焦点,曲线与在第一象限交点为,且离心率之积为1.若,则该双曲线的离心率为_.【答案】【分析
展开阅读全文