本章学习目标1了解数控加工机床的加工方法以及数控加工的特点课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《本章学习目标1了解数控加工机床的加工方法以及数控加工的特点课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 本章 学习 目标 了解 数控 加工 机床 方法 以及 特点 课件
- 资源描述:
-
1、本章本章学习目标学习目标:1.了解数控加工机床的加工方法以及数控加工的特点。2.了解对数控加工对象进行数值处理的方法。3.了解确定机床坐标系、工件坐标系、编程坐标系的有关规定。4.了解基点、节点、参数点的概念和一般建立方法。5.了解数控加工数学模型建立的一般方法。第一章第一章 数控应用数学概述数控应用数学概述本章主要内容:本章主要内容:1.数控加工机床的加工方法。2.数控加工的特点。3.对数控加工对象进行数值处理的方法。4.机床坐标系、工件坐标系、编程坐标系的概念和规定。5.基点、节点、参数点的概念和一般建立方法。6.数控加工数学模型建立的一般方法。一、普通加工机床与数控加工机床 1机床的定义
2、:机床(machine tool)是对金属或其他材料的坯料或工件进行加工,使之获得所要求的几何形状、尺寸精度和表面质量的机器。狭义的机床仅指使用最广、数量最多的金属切削机床。2普通加工机床的定义:普通加工机床或传统加工机床是指动作主要由手工操作完成的机床。第一节第一节 数控加工机床及其加工方法数控加工机床及其加工方法3数控加工机床的定义:数控加工机床是装备了数控系统的机床。机床的动作加工过程所需的各种操作和步骤,以及刀具与工件之间的相对位移量都由数字化的代码来表示,经过计算机处理,以指令发给机床的执行元件,使机床自动加工出所需的零件。1普通数控机床 最普通的数控机床有车床、铣床、钻床、镗床、磨
3、床和齿轮加工机床等。2数控加工中心 这类机床是在一般数控机床上加装一个刀具库和自动换刀装置。这类机床打破了一台机床只能进行单工种加工的传统概念,可在实行一次定位后完成多个工序的加工。二、数控加工机床的种类3特种数控加工机床 用非金属切削的特殊手段进行加工的数控机床,如数控电火花、数控线切割机床、数控激光加工机床等。1数控车削加工 2数控铣削加工 三、数控机床加工方法一、数控加工的特点1自动化程度高 2加工精度高,加工质量稳定 3对加工对象的适应性极高 4生产效率高 5易于建立计算机通信网络 第二节第二节 数控加工的特点及展望数控加工的特点及展望二、制造业的发展方向及展望 机械制造业自动化正在经
4、历着:CNC(计算机数控化)FMS(柔性制造系统)CIMS(计算机集成制造系统)“三部曲”。它使机械制造业自动化不断趋向深化,即朝着设计、制造、管理全自动化的高层次方向发展。一、数控机床加工工件过程 数控加工的对象就是工作图所指定的零件,工作图提供了零件的几何信息、技术要求等信息,但是这些信息还远远不够,也不能直接为数控机床接受,除了图样提供的信息外还要补充工艺信息、辅助信息并进行加工处理,即数学处理和工艺处理,使之变换成数控机床能够接受的加工指令(或程序),才能将零件毛坯生产加工成符合零件图要求的成品零件。其完整过程如图15所示。第三节第三节 对数控加工对象的数学处理对数控加工对象的数学处理
5、图15 数控加工过程二、数学处理内容 数学处理内容包括数值换算、坐标计算和辅助计算等三个方面。数值换算是准备,坐标计算是核心,辅助计算是完善,其内容如图16所示。数学处理内容数学处理内容数值换算数值换算坐标计算坐标计算标注尺寸换算标注尺寸换算尺寸链解算尺寸链解算基点的直接计算基点的直接计算节点的拟合计算节点的拟合计算参数点计算参数点计算其他相关计算其他相关计算辅助计算辅助计算图16数学处理内容三、数学处理的方法数学处理的方法主要有八种,如图17所示。解析几何计算法解析几何计算法拟合计算法拟合计算法作图计算法作图计算法代数计算法代数计算法几何计算法几何计算法三角函数计算法三角函数计算法微积分计算
6、法微积分计算法向量代数计算法向量代数计算法数学处理方法数学处理方法图17数学处理方法框图 1作图计算法 这种计算方法是以准确绘图为主,并辅以简单加、减运算的一种处理方法,因其实质为作图,故在习惯上也称为作图法。其绘图、计算后所得结果的准确程度,完全由绘图的精度确定。2代数计算法 在数控编程中,由于所涉及的零件轮廓形状各异,一般极少单独采用代数与几何这两种方法中的一种进行坐标点的计算,而往往将这两种计算法作为其他计算法(如三角函数计算法)的过渡或辅助手段,并融合在其他计算法中应用。3几何计算法 几何计算法包括平面几何与立体几何,利用几何学中基本定理进行数学推导证明,进而求出加工轮廓的点的数值。4
7、三角函数计算法 三角函数计算法简称三角计算法。在手工编程工作中,因为这种方法比较容易掌握,所以应用十分广泛,是进行数学处理时应重点掌握的方法之一。5解析几何计算法 解析几何包括平面解析几何与空间解析几何,重点应掌握平面解析几何。应用平面解析几何计算法可省掉一些复杂的三角关系,用简单的数学方程即可准确地描述零件轮廓的几何图形,因此,分析和计算的过程都得到简化,并减少了较多层次的中间运算,使其计算误差大大减小,计算结果更加准确,并且不易出错。在绝对编程坐标系中,应用这种方法所解出的坐标值一般不产生累积误差,减少了尺寸换算的工作量,还可提高其计算效率等。因此,在数控机床加工的手工编程中,平面解析几何
8、计算法是应用较普遍的计算方法之一。6、拟合计算法 在数控加工中经常用到这种方法,它是用微小细分的直线段或圆弧段近似代替非圆曲线的一种数学处理方法。7、微积分计算法 应用微积分、微分方程等方法计算题目中所提出的问题。8、向量代数计算法 向量代数较多地应用于较复杂的空间矢量计算。1、标注尺寸换算(1)直接换算 指直接通过图样上的标注尺寸,即可获得编程尺寸的一种方法。进行直接换算时,可对图样上给定的基本尺寸或极限尺寸的中值,经过简单的加、减运算后完成。(2)间接换算 指需要通过平面几何、三角函数等计算方法进行必要解算,才能得到其编程尺寸的一种方法。用间接换算法所换算出来的尺寸,可以是直接编程时所需的
9、基点坐标尺寸,也可以是为计算某些基点坐标值所需要的中间尺寸。2、尺寸链的解算四、数值换算简介一、坐标系基本概念1、坐标:能够确定一个点在空间的位置的一个或一组数,叫做这个点的坐标。2、坐标系:具有点连续移动的空间、原点、方向和单位长度的基准系统叫坐标系。第四节第四节 坐标系坐标系 (机床坐标系、工件坐标系、编程坐标系)(机床坐标系、工件坐标系、编程坐标系)3、直线坐标系:(1)在给定的直线l上指定正方向;(2)在直线l上取一定点作为原点(一般以O表示这一点);(3)任取一条一定长度的线段作为单位长度。我们就说在直线l上建立了直线坐标系,这一条直线叫做坐标轴,也叫做数轴。实数和数轴上的点可以建立
10、一一对应的关系。就是说,对于任何一个实数,总可以用数轴上的一个(唯一的)点来表示它;反过来,数轴上的任何一个点,都表示一个(唯一的)实数。我们把这个点可以连续移动的直线叫做一维空间。4、平面直角坐标系:(1)平面直角坐标系定义1)在平面上选定两条互相垂直的直线,并指定正方向(用箭头表示);2)以二直线的交点作为原点;3)选取任意长的线段作为二直线的公共单位长度。这样,我们就说在平面上建立了一个直角坐标系直角坐标系(图112)。(2)平面上点的坐标 在给定的直角坐标系下,对于平面上的任意一点P,我们可以得到唯一的一对有序实数(a,b)来和它对应;反过来,对于任何一对有序实数(a,b),在平面上就
11、能确定一个唯一的点,这个点的坐标是(a,b),就是说,平面上的点P和一对有序实数(a,b)之间建立了一一对应的关系。我们把这个点可以连续移动的平面叫做二维空间。或者把由两个有序数字确定的点的空间叫二维空间。5、空间坐标系:(1)空间坐标系定义1)在空间上选定三条互相垂直的直线,并指定正方向(用箭头表示);2)以三直线的交点作为原点;3)选取任意长的线段作为三直线的公共单位长度。这样,我们就说在空间上建立了一个直角坐标系。直角坐标系。(2)空间上点的坐标 在空间确定直角坐标系后,空间中任意一点就唯一地决定了一个“有序三数组”;反之,任意一个这样的“有序三数组”就唯一地决定了空间中的一个点也就是说
12、,建立了空间直角坐标系之后,空间中的所有点与由三个有顺序的实数构成的数组的全体之间便建立了一一对应关系。我们把这个点可以连续移动的空间叫做三维空间,或者把由三个有序数字确定的点的空间叫三维空间。1、机床坐标系的定义 为了确定机床的运动方向和移动距离,需要在机床上建立一个坐标系,这个坐标系就叫机床坐标系。2、坐标轴的确定方法 在确定机床坐标轴时,一般先确定Z轴,然后确定X轴和Y轴,最后确定其它轴。(1)Z轴 Z轴的方向是由传递切削力的主轴确定的,与主轴轴线平行的坐标轴即为Z轴。如果机床没有主轴,则Z轴垂直于工件装卡面。同时规定刀具远离工件的方向作为坐标轴的正方向。二、机床坐标系(2)X轴 X轴是
13、水平的,平行于工件的装卡面,且垂直于Z轴。(3)Y轴 Y坐标轴垂直于X、Z坐标轴。Y运动的正方向根据X和Z坐标的正方向,按照右手直角笛卡儿坐标系来判断。(4)旋转运动 围绕坐标轴X、Y、Z旋转的运动,分别用A、B、C表示。它们的正方向用右手螺旋法则判定。(5)工件运动时的方向 3、坐标原点的确定 机床坐标系的原点是在机床出厂时,由制造厂家在机床上设置的一个固定点,简称MCS。它是机床制造时的基准点,又是数控机床进行加工或位移的基准点。1、定义 工件坐标系是用于确定工件几何图形上各几何要素(点、直线和圆弧)的位置而建立的坐标系。工件坐标系的原点即是工件零点。2、工件零点的一般选用原则:(1)工件
14、零点选在工件图样的尺寸基准上。(2)能使工件方便地装卡、测量、对刀和检验。(3)工件零点尽量选在尺寸精度较高、粗糙度比较低的工件表面上。(4)对于有对称形状的几何零件,工件零点最好选在对称中心上。三、工件坐标系 编程坐标系是在编制数控程序过程中用于确定工件几何图形上各几何要素(点、直线和圆弧)的位置而建立的坐标系。编程坐标系分为两种,即绝对坐标系和增量坐标系(或相对坐标系)。1、绝对坐标系 编程坐标系的所有坐标点的位置都以坐标原点为基准的坐标系。2、增量坐标系 也称相对坐标系,它是新的坐标原点与旧的坐标原点有相对变换的坐标系。在数控加工中特指加工轮廓曲线上,各线段的终点位置以该线段起点为坐标原
15、点而确定的坐标系。四、编程坐标系一、基点与直接计算 1、基点的含义 构成零件轮廓的不同几何要素的交点、切点或者各几何元素间的联结点称为基点,如两直线间的交点,直线与圓弧或圆弧与圆弧间的交点或切点,圆弧与二次曲线的交点或切点等。2、基点直接计算的内容 每条运动轨迹(线段)的起点或终点(即基点)在选定坐标系中的各坐标值和圆弧运动轨迹的圆心坐标值。第五节第五节 基点、节点、参数点基点、节点、参数点 1、节点的含义 当采用不具备非圆曲线插补功能的数控机床加工非圆曲线轮廓的零件时,加工程序的编制工作,常常需要用直线或圆弧去近似代替非圆曲线,称为拟合处理。拟合线段中的交点或切点就称为节点。也可以说在满足允
16、许的编程误差的条件下进行分割,即用若干直线段或圆弧来逼近给定的曲线,逼近线段的交点或切点称为节点。二、节点与拟合计算 2、节点拟合计算的内容 节点拟合计算的难度及工作量都较大,故宜通过计算机完成,必要时,也可由人工计算完成,但对编程者的数学处理能力要求较高。拟合结束后,还必须通过相应的计算,对每条拟合线段的拟合误差进行分析。除基点、节点外,在数控加工过程中还有一些点的坐标值是编程不可缺少的,这些点称为参数点,例如轮廓的粗加工、半精加工所涉及的点(如中间加工过程刀轨基点),螺纹加工中的大径、中径、小径等的起刀点、退刀点、换刀点、圆心点以及坐标系的参考点,这些参数点由辅助计算完成。三、参数点 从运
17、动的角度看,基点就是运动轨迹几何性质改变的转换点。基点、节点、参数点都属于几何尺寸及位置的点,都是编写加工程序必不可少的点,在加工图样中不可能将其标清楚、标完全,为此要通过建立解题分析图将它们一一标出。四、基点、节点、参数点的一般建立 数控加工的实质是通过预先设定的数控指令(或程序)由适当的数控机床用不同的加工方法(车、铣、钻、镗、磨、光、电等)完成对工件的加工,以达到设计要求的尺寸精度。无论用那一种方法,都是要去除毛坯件上多余的部分,剩下余留的部分就是所需要的成品工件。我们主要考虑数学元素,设定适当的坐标系,无论是二维平面图形,三维空间实体,还是多自由度多维空间,把各种切削刀具都可以简化为一
18、个刀位点或一个微型球形刀,刀位点扫掠经过之处,任何材料均被沿着轨迹严格地切削铲除,刀位点按照工艺刀轨路线有序地运动,工件毛坯就像削苹果一样被层层切除,最后留下的部分就是成品工件。在这里我们忽略了刀具的材料、形状、硬度、夹具、载荷、磨损等,也忽略了工件的材料、形状、硬度、夹具、载荷等因素。第六节第六节 数控加工数学模型的建立数控加工数学模型的建立一、对数控加工的抽象化理解1、零件图分析 对零件图样进行分析时,要求达到下面三个“完整准确完整准确”:(1)一组完整准确的视图 (2)一组完整准确的几何尺寸 (3)一组完整准确的要求 2、对零件图样进行数值变换 3、绘制解题分析图 4、计算并列表写出结果
19、二、数控加工数学模型建立的一般方法1、二维空间数学模型例一、对零件图129所示的螺纹锥面轴建立数控加工数学模型,毛坯直径32mm,材料为45钢,调质处理。三、建立数控加工数学模型范例解:(1)图样分析 (2)数值变换 (3)解题分析图 (4)基点、参数点坐标表图129零件图与说明 2、三维空间数学模型 例二、图131所示的棱台面,用三坐标数控铣床加工棱台面,材料为45钢,毛坯为一矩形块,建立进行数控加工时的数学模型。解:(1)图样分析 (2)数值变换 (3)解题分析图 (4)基点、参数点坐标表 图131 棱台面加工图本章的教学要求:本章的教学要求:1.掌握常用的几种分解因式的方法,能熟练地对多
20、项式进行因式分解。2.掌握一元一次方程、二元一次方程组和三元一次方程组的解法,能熟练地求这类方程或方程组的解。3.掌握二元一次方程、可化为二元一次方程的分式方程以及简单的二元二次方程组的解法,能熟练地求这类方程或方程组的解。第二章第二章 初等代数初等代数本章的教学内容:本章的教学内容:1.常用的几种分解因式的方法:提取公因式法、运用公式法、分组分解法、十字相乘法。2.一元一次方程和可化为一元一次方程的分式方程的解法。3.二元一次方程组和三元一次方程组的解法。4.二元一次方程和可化为二元一次方程的分式方程的解法。5.简单的二元二次方程组的解法。1、提取公因式法 如果一个多项式的各项含有公因式,那
21、么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提取公因式法提取公因式法。第一节第一节 分解因式分解因式一、分解因式的定义 把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式分解因式(或叫做因式分解)。二、常用的分解因式的方法2、运用公式法 如果把乘法公式反过来,那么就可以用来把某些多项式分解因式,这种分解因式的方法叫做运用公式法运用公式法。(1)平方差公式平方差公式 a a2 2b b2 2(a ab b)(a(ab)b)这就是说,两个数的平方差,等于这两个数的和与这两个两个数的平方差,等于这两个数的和与这两个数的差的积。数的差的积。这
22、个公式就是平方差公式。平方差公式。2.完全平方公式完全平方公式 a22abb2(ab)2a22abb2(ab)2 这就是说,两个数的平方和,加上(或者减去)这两个两个数的平方和,加上(或者减去)这两个数的积的数的积的2倍,等于这两个数的和(或者差)的平方。倍,等于这两个数的和(或者差)的平方。我们把a22abb2及a22abb2这样的式子叫做完全平方式完全平方式,上面方框中的两个公式就是完全平方公式完全平方公式。3.立方和与立方差公式立方和与立方差公式a3b3(ab)(a2abb2)a3b3(ab)(a2abb2)这就是说,两个数的立方和(或者差),等于这两个数的两个数的立方和(或者差),等于
23、这两个数的和(或者差)乘以它们的平方和与它们的积的差(或者和)。和(或者差)乘以它们的平方和与它们的积的差(或者和)。这两个公式分别就是立方和公式立方和公式与立方差公式立方差公式。3、分组分解法、分组分解法 利用分组来分解因式的方法叫做分组分解法分组分解法。它有以下两种情况:(1)分组后能直接提取公因式 如果把一个多项式的项分组并提取公因式后,它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式。注意 用分组分解法时,一定要想一想分组后能否继续进行,完成分解因式,由此合理选择分组的方法。(2)分组后能直接运用公式 如果把一个多项式的项分组后,各组都能直接运用公式或提取公因式进行
24、分解,并且各组在分解后,它们之间又能运用公式或有公因式,那么这个多项式也可以用分组分解法来分解因式。4、十字相乘法x x2 2(a(ab)xb)xabab(x(xa)(xa)(xb)b)这就是说,对于二次三项式x2pxq,如果能够把常数项q分解成两个因数a、b的积,并且ab等于一次项的系数p,那么它就可以分解因式,即x2pxqx2(ab)xab(xa)(xb).运用这个公式,可以把某些二次项系数为1的二次三项式分解因式。把 分解因式时:如果常数项q是正数,那么把它分解成两个同号因数,它们的符号与一次项系数p的符号相同;如果常数项q是负数,那么把它分解成两个异号因数,其中绝对值较大的因数与一次项
25、系数p的符号相同。对于分解的两个因数,还要看它们的和是不是等于一次项的系数p。qpxx2 上面的方法是用来分解二次项系数为1的二次三项式,那么,应该如何把二次三项式 进行因式分解呢?我们知道,cbxax2)()()()(22112112212212112212212112212212211cxacxaccxcacaxaaccxcacaxaaccxcaxcaxaacxacxa反过来,就得到 我们发现,二次项的系数a分解成a1、a2,常数项c分解成c1、c2,并且把a1、a2,、c1、c2排列如下:这里按斜线交叉相乘,再相加,就得到a1c2a2c1,如果它们正好等于ax2bxc的一次项系数b,那么
展开阅读全文