人教版高中数学必修五同课异构课件:1.2 应用举例1.2.3 探究导学课型 .ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《人教版高中数学必修五同课异构课件:1.2 应用举例1.2.3 探究导学课型 .ppt》由用户(金钥匙文档)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版高中数学必修五同课异构课件:1.2应用举例1.2.3 探究导学课型 人教版 高中数学 必修 课异构 课件 1.2 应用 举例 探究 导学课型 下载 _人教A版_数学_高中
- 资源描述:
-
1、第3课时 三角形中的几何计算 类型一类型一 有关三角形的面积问题有关三角形的面积问题 1.(20141.(2014新课标全国卷新课标全国卷)钝角三角形钝角三角形ABCABC的面积是的面积是 , AB=1AB=1,BC= BC= ,则,则AC=(AC=( ) ) A.5A.5 B. B. C.2C.2 D.1D.1 2.2.在在ABCABC中,中,cosA= cosB= BC=5cosA= cosB= BC=5,则,则ABCABC的面积的面积 为为 . . 5 13 , 3 5, 2 1 2 5 3.(20143.(2014西安高二检测西安高二检测) )在在ABCABC中,已知中,已知c=2c=
2、2,C= C= (1)(1)若若ABCABC的面积等于的面积等于 求求a a,b b的值的值. . (2)(2)若若sinB=2sinAsinB=2sinA,求,求ABCABC的面积的面积. . . 3 3, 【解题指南解题指南】1.1.利用三角形面积公式求得角利用三角形面积公式求得角B B,然后结合条,然后结合条 件,利用余弦定理,求得件,利用余弦定理,求得AC.AC. 2.2.解答本题先求解答本题先求sinCsinC,再利用正弦定理求,再利用正弦定理求ACAC,便可求得三角,便可求得三角 形的面积形的面积. . 3.(1)3.(1)根据三角形的面积根据三角形的面积S= absinCS= a
3、bsinC及余弦定理列出及余弦定理列出a a,b b的方的方 程组,解此方程组即可程组,解此方程组即可. . (2)(2)由条件找出由条件找出a a与与b b的关系式,并借助余弦定理求的关系式,并借助余弦定理求a a,b b,再求,再求 面积面积. . 1 2 【自主解答自主解答】1.1.选选B.B.因为因为S S ABCABC= acsinB= = acsinB= 1 1sinBsinB = = ,所以,所以sinB= sinB= ,所以,所以B= B= 或或 . .当当B= B= 时,经计算时,经计算ABCABC 为等腰直角三角形,不符合题意,舍去为等腰直角三角形,不符合题意,舍去. .所
4、以所以B= B= ,使用余弦,使用余弦 定理,定理,b b2 2=a=a2 2+c+c2 2- -2accosB2accosB,解得,解得b= b= ,故选,故选B.B. 2 1 2 5 1 2 1 2 2 2 4 3 4 4 3 4 2.2.由由cosA= cosA= 得得sinA=sinA= 由由cosB= cosB= 得得sinB=sinB= 所以所以sinC=sin(A+B)=sinAcosB+cosAsinBsinC=sin(A+B)=sinAcosB+cosAsinB 由正弦定理得由正弦定理得AC=AC= 所以所以ABCABC的面积为的面积为 S= S= BCBCACACsinC=
5、 sinC= 答案答案: 5 13 , 2 12 1 cos A. 13 3 5, 2 4 1 cos B. 5 12354362016 (). 135135656565 4 5 BC sin B13 5 . 12 sin A3 13 1 2 113 168 5. 23653 8 3 3.(1)3.(1)由题意得由题意得 即即 解得解得 ( (负值舍去负值舍去) ) (2)(2)因为因为sinB=2sinAsinB=2sinA,所以,所以b=2ab=2a, 又因为又因为c c2 2=a=a2 2+b+b2 2- -2abcosC2abcosC,所以,所以4=a4=a2 2+b+b2 2- -a
6、bab, 由知由知 ( (负值舍去负值舍去) ) 所以所以 222 1 absin3 23 cab2abcos 3 , , 22 ab4 4abab , , a2 b2. , 2 3 a 3 4 3 b 3 , , 112 34 332 3 Sabsin C. 223323 【延伸探究延伸探究】若题若题2 2条件变为:条件变为:BC=2BC=2,C= cosB= C= cosB= 试求试求ABCABC的面积的面积. . 【解析解析】由题意由题意cosB= cosB= 得得sinB= sinB= sinA=sin(sinA=sin(- -B B- -C)=sin( C)=sin( - -B)B)
7、 由正弦定理由正弦定理 得得AB= AB= 所以所以 4 ,3 5, 3 5 4 . 5 3 4 3323247 2 sin cos Bcos sin B 44252510 , BCAB sin Asin C , 10 . 7 111048 SBC AB sin B2. 22757 【规律总结规律总结】求解与三角形面积有关的平面图形面积的技巧求解与三角形面积有关的平面图形面积的技巧 (1)(1)若平面图形为不规则图形,可通过作辅助线或其他途径构若平面图形为不规则图形,可通过作辅助线或其他途径构 造三角形,转化为求三角形的面积造三角形,转化为求三角形的面积. . (2)(2)若所给图形为平面三角
8、形,则需要运用正、余弦定理求出若所给图形为平面三角形,则需要运用正、余弦定理求出 某两边及夹角,再利用三角形面积公式某两边及夹角,再利用三角形面积公式S= absinCS= absinC或或S=S= bcsinAbcsinA或或S= acsinBS= acsinB进行求解进行求解. . 1 2 1 2 1 2 【拓展延伸拓展延伸】与圆有关的三角形面积公式与圆有关的三角形面积公式 (1)S(1)S ABCABC= (a+b+c)r(r = (a+b+c)r(r为为ABCABC内切圆的半径内切圆的半径).). (2)S(2)S ABCABC= (R = (R为为ABCABC外接圆半径外接圆半径)
9、) (3)S(3)S ABCABC=2R =2R2 2sinAsinBsinC.(RsinAsinBsinC.(R为为ABCABC外接圆半径外接圆半径) ) (4)(4)海伦公式:海伦公式:S S ABCABC= = 其中其中p= (a+b+c).p= (a+b+c). 1 2 abc . 4R p p apb (p c) , 1 2 类型二类型二 三角形中三角恒等式的证明三角形中三角恒等式的证明 1.1.在在ABCABC中,角中,角A A,B B,C C所对的边分别为所对的边分别为a a,b b,c c,求证:,求证: 2.2.在在ABCABC中,已知中,已知 (1)(1)求证:求证:tan
10、B=3tanA.tanB=3tanA. (2)(2)若若cosC= cosC= 求求A A的值的值. . 22 2 sin AB ab . csin C AB AC3BA BC. 5 5 , 【解题指南解题指南】1.1.此题所证结论包含此题所证结论包含ABCABC的边角关系,因此可的边角关系,因此可 以考虑两种途径进行证明:以考虑两种途径进行证明:(1)(1)把角的关系通过正、余弦定理把角的关系通过正、余弦定理 转化为边的关系,然后进行化简、变形转化为边的关系,然后进行化简、变形.(2).(2)把边的关系转化为把边的关系转化为 角的关系,一般是通过正弦定理,然后利用三角函数公式进行角的关系,一
11、般是通过正弦定理,然后利用三角函数公式进行 恒等变形恒等变形. . 2.(1)2.(1)注意向量数量积公式的应用,正弦定理的应用注意向量数量积公式的应用,正弦定理的应用( (边角转边角转 化化).). (2)(2)先利用先利用cosC= cosC= 求出求出tanCtanC,再利用两角和的正切公式构造,再利用两角和的正切公式构造 与与tanAtanA有关的方程有关的方程. . 5 5 【自主解答自主解答】1.1.方法一:由正弦定理的推广及余弦定理可知,方法一:由正弦定理的推广及余弦定理可知, 右边右边= = 其中其中R R是是ABCABC外接圆的半径外接圆的半径. . 所以原等式成立所以原等式
展开阅读全文