滤波器的设计方法课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《滤波器的设计方法课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 滤波器 设计 方法 课件
- 资源描述:
-
1、第7章 滤波器的设计方法 第章第章 滤波器的设计方法滤波器的设计方法 7.1 由连续时间滤波器设计离散时间由连续时间滤波器设计离散时间IIR滤波器滤波器 7.2 低通低通IIR滤波器的频率变换法滤波器的频率变换法7.3 用窗函数法设计用窗函数法设计FIR滤波器滤波器 7.4 设计设计FIR滤波器示例滤波器示例7.5 用频率采样法设计用频率采样法设计FIR滤波器滤波器 7.6 FIR滤波器的最佳逼近滤波器的最佳逼近7.7 FIR等波纹逼近举例等波纹逼近举例 7.8 IIR和FIR数字滤波器的评价 7.0 基基本概念本概念第7章 滤波器的设计方法 7.0 基本概念基本概念 7.0.1 选频滤波器的
2、分类选频滤波器的分类 数字滤波器是数字信号处理的重要基础。在对信号的过滤、检测与参数的估计等处理中,数字滤波器是使用最广泛的线性系统。数字滤波器是对数字信号实现滤波的线性时不变系统。它将输入的数字序列通过特定运算转变为输出的数字序列。因此,数字滤波器本质上是一台完成特定运算的数字计算机。第7章 滤波器的设计方法 我们已经知道,一个输入序列x(n),通过一个单位脉冲响应为h(n)的线性时不变系统后,其输出响应y(n)为 nmnxmhnhnxny)()()()()(将上式两边经过傅里叶变换,可得)()()(jjjeHeXeY式中,Y(ej)、X(ej)分别为输出序列和输入序列的频谱函数,H(ej)
3、是系统的频率响应函数。第7章 滤波器的设计方法 可以看出,输入序列的频谱X(ej)经过滤波后,变为X(ej)H(ej)。如果|H(ej)|的值在某些频率上是比较小的,则输入信号中的这些频率分量在输出信号中将被抑制掉。因此,只要按照输入信号频谱的特点和处理信号的目的,适当选择H(ej),使得滤波后的X(ej)H(ej)符合人们的要求,这就是数字滤波器的滤波原理。和模拟滤波器一样,线性数字滤波器按照频率响应的通带特性可划分为低通、高通、带通和带阻几种形式。它们的理想模式如图7-1所示。(系统的频率响应H(ej)是以2为周期的。)第7章 滤波器的设计方法 图 7-1 数字滤波器的理想幅频特性 o22
4、o22o22o22(a)(b)(c)(d)低通高通带通带阻第7章 滤波器的设计方法 满足奈奎斯特采样定理时,信号的频率特性只能限带于|的范围。由图7-1可知,理想低通滤波器选择出输入信号中的低频分量,而把输入信号频率在c范围内所有分量全部滤掉。相反地,理想高通滤波器使输入信号中频率在c范围内的所有分量不失真地通过,而滤掉低于c的低频分量。带通滤波器只保留介于低频和高频之间的频率分量。第7章 滤波器的设计方法 7.0.2 滤波器的技术指标滤波器的技术指标 理想滤波器(如理想低通滤波器)是非因果的,其单位脉冲响应从-延伸到+,因此,无论用递归还是非递归方法,理想滤波器是不能实现的,但在概念上极为重
5、要。一般来说,滤波器的性能要求往往以频率响应的幅度特性的允许误差来表征。以低通滤波器为例,如图7-2(称容限图)所示,频率响应有通带、过渡带及阻带三个范围(而不是理想的陡截止的通带、阻带两个范围)。图中1为通带的容限,2为阻带的容限。第7章 滤波器的设计方法 图 7-2 低通滤波器频率响应幅度特性的容限图 1111通带过渡带 阻带2o1第7章 滤波器的设计方法 在通带内,幅度响应以最大误差1逼近于1,即 111|)(|1jeH在阻带内,幅度响应以误差小于2而逼近于零,即 2|)(|jeHs|p 式中,p,s分别为通带截止频率和阻带截止频率,它们都是数字域频率。幅度响应在过渡带(s-p)中从通带
6、平滑地下降到阻带,过渡带的频率响应不作规定。第7章 滤波器的设计方法 虽然给出了通带的容限1及阻带的容限2,但是,在具体技术指标中往往使用通带允许的最大衰减(波纹)Ap和阻带应达到的最小衰减As描述,Ap及As的定义分别为:2010lg20|)(|lg20|)(|)(|lg20)1lg(20|)(|lg20|)(|)(|lg20ssppjjjpjjjpeHeHeHAeHeHeHA(7-1a)(7-1b)式中,假定|H(ej0)|=1(已被归一化)。例如|H(ej)|在p处满足|H(ejp)|=0.707,则Ap=3 dB;在s处满足|H(ejs)|=0.001,则As=60 dB(参考图7-2
7、)。(注:lg是log10的规范符号表示。)第7章 滤波器的设计方法 7.0.3 FIR型滤波器和型滤波器和IIR型滤波器型滤波器 数字滤波器按单位脉冲响应h(n)的时域特性可分为无限长脉冲响应IIR(Infinite Impulse Response)滤波器和有限长脉冲响应FIR(Finite Impulse Response)滤波器。IIR滤波器一般采用递归型的实现结构。其N阶递归型数字滤波器的差分方程为 MkNkkkknyaknxbny01)()()((7-2)第7章 滤波器的设计方法 式(7-2)中的系数ak至少有一项不为零。ak0 说明必须将延时的输出序列反馈回来,也即递归系统必须有
8、反馈环路。相应的IIR滤波器的系统函数为 NkkkMkkkzazbzH101)((7-3)IIR滤波器的系统函数H(z)在Z平面上不仅有零点,而且有极点。第7章 滤波器的设计方法 FIR滤波器的单位脉冲响应h(n)是有限长的,即0nN-1,该系统一般采用非递归型的实现结构,但如果系统函数中出现零、极点相消时,也可以有递归型的结构(如频率采样结构)。FIR滤波器的系统函数为 10)()(NnnznhzH(7-4)由式(7-4)可知,H(z)的极点只能在Z平面的原点。第7章 滤波器的设计方法 7.0.4 滤波器的设计步骤滤波器的设计步骤 按照实际任务要求,确定滤波器的性能指标。用一个因果稳定的离散
9、线性时不变系统的系统函数去逼近这一性能要求。根据不同要求可以用IIR系统函数,也可以用FIR系统函数去逼近。利用有限精度算法来实现这个系统函数。这里包括选择运算结构(如第4章中的各种基本结构),选择合适的字长(包括系数量化及输入变量、中间变量和输出变量的量化)以及有效数字的处理方法(舍入、截尾)等。第7章 滤波器的设计方法(1)基本原理 利用模拟滤波器来设计数字滤波器,也就是使数字滤波器能模仿模拟滤波器的特性,这种模仿可以从不同的角度出发。脉冲响应不变法是从滤波器的脉冲响应出发,使数字滤波器的单位脉冲响应序列h(n)模仿模拟滤波器的冲激响应ha(t),即将ha(t)进行等间隔采样,使h(n)正
10、好等于ha(t)的采样值,满足 h(n)=ha(nT)(7-5)式中,T是采样周期。7.1由连续时间滤波器设计离散时间由连续时间滤波器设计离散时间IIR滤波器滤波器7.1.1 滤波器设计的冲激响应不换法滤波器设计的冲激响应不换法第7章 滤波器的设计方法 如果令Ha(s)是ha(t)的拉普拉斯变换,H(z)为h(n)的Z变换,利用采样序列的Z变换与模拟信号的拉普拉斯变换的关系得 kTjsXTjksXTzXkaskaezsT21)(1)(7-6)则可看出,脉冲响应不变法将模拟滤波器的S平面变换成数字滤波器的Z平面,这个从s到z的变换z=esT是从S平面变换到Z平面的标准变换关系式。第7章 滤波器的
11、设计方法 图 7-3 脉冲响应不变法的映射关系 j3/T/T3/T/Too11jImzRezZ平面S平面第7章 滤波器的设计方法(2)混叠失真混叠失真 由式(7-6)知,数字滤波器的频率响应和模拟滤波器的频率响应间的关系为 TkjHTeHkaj21)(7-7)这就是说,数字滤波器的频率响应是模拟滤波器频率响应的周期延拓。正如采样定理所讨论的,只有当模拟滤波器的频率响应是限带的,且带限于折叠频率以内时,即 0)(jHa2|sT(7-8)第7章 滤波器的设计方法 才能使数字滤波器的频率响应在折叠频率以内重现模拟滤波器的频率响应,而不产生混叠失真,即 TjHTeHaj1)(|(7-8)但是,任何一个
12、实际的模拟滤波器频率响应都不是严格限带的,变换后就会产生周期延拓分量的频谱交叠,即产生频率响应的混叠失真,如图7-4所示。这时数字滤波器的频响就不同于原模拟滤波器的频响,而带有一定的失真。当模拟滤波器的频率响应在折叠频率以上处衰减越大、越快时,变换后频率响应混叠失真就越小。这时,采用脉冲响应不变法设计的数字滤波器才能得到良好的效果。第7章 滤波器的设计方法 图 7-4脉冲响应不变法中的频响混叠现象 32oo23 T第7章 滤波器的设计方法 对某一模拟滤波器的单位冲激响应ha(t)进行采样,采样频率为fs,若使fs增加,即令采样时间间隔(T=1/fs)减小,则系统频率响应各周期延拓分量之间相距更
13、远,因而可减小频率响应的混叠效应。第7章 滤波器的设计方法(3)模拟滤波器的数字化方法模拟滤波器的数字化方法 由于脉冲响应不变法要由模拟系统函数Ha(s)求拉普拉斯反变换得到模拟的冲激响应ha(t),然后采样后得到h(n)=ha(nT),再取Z变换得H(z),过程较复杂。下面我们讨论如何由脉冲响应不变法的变换原理将Ha(s)直接转换为数字滤波器H(z)。设模拟滤波器的系统函数Ha(s)只有单阶极点,且假定分母的阶次大于分子的阶次(一般都满足这一要求,因为只有这样才相当于一个因果稳定的模拟系统),因此可将 NkkkassAsH1)(7-9)第7章 滤波器的设计方法 其相应的冲激响应ha(t)是H
14、a(s)的拉普拉斯反变换,即 NktskaatueAsHFthk11)()()(式中,u(t)是单位阶跃函数。在脉冲响应不变法中,要求数字滤波器的单位脉冲响应等于对ha(t)的采样,即 NknTskNknTskanueAnueAnThnhkk11)()()()()(7-10)第7章 滤波器的设计方法 NkTskNknTsnkNknTsknnnzeAzeAzeAznhzhkkk111101101)()()()(对h(n)求Z变换,即得数字滤波器的系统函数(7-11)将式(7-9)的Ha(s)和式(7-11)的H(z)加以比较,可以看出:(1)S平面的每一个单极点s=sk变换到Z平面上z=eskT
15、处的单极点。(2)Ha(s)与H(z)的部分分式的系数是相同的,都是Ak。第7章 滤波器的设计方法 (3)如果模拟滤波器是因果稳定的,则所有极点sk位于S平面的左半平面,即Resk0,则变换后的数字滤波器的全部极点在单位圆内,即|eskT|=eReskT1,因此数字滤波器也是因果稳定的。(4)虽然脉冲响应不变法能保证S平面极点与Z平面极点有这种代数对应关系,但是并不等于整个S平面与Z平面有这种代数对应关系,特别是数字滤波器的零点位置就与模拟滤波器零点位置没有这种代数对应关系,而是随Ha(s)的极点sk以及系数Ak两者而变化。第7章 滤波器的设计方法 从式(7-8)看出,数字滤波器频率响应幅度还
16、与采样间隔T成反比:TjHTeHaj1)(|如果采样频率很高,即T很小,数字滤波器可能具有太高的增益,这是不希望的。为了使数字滤波器增益不随采样频率而变化,可以作以下简单的修正,令 h(n)=Tha(nT)(7-12)则有:NkTskzeTAzHk111)(TjHkTjTjHeHakaj2)(7-13)(7-14)第7章 滤波器的设计方法 例例 7-1 设模拟滤波器的系统函数为 3111342)(2sssssHa试利用脉冲响应不变法将Ha(s)转换成IIR数字滤波器的系统函数H(z)。解解 直接利用式(7-14)可得到数字滤波器的系统函数为 TTTTTTTezeezeeTzezTezTzH42
17、3131311)(1)(11)(设T=1,则有 21101831.04177.013181.0)(zzzzH第7章 滤波器的设计方法 模拟滤波器的频率响应Ha(j)以及数字滤波器的频率响应H(ej)分别为:2201831.04177.013181.0)(432)(jjjjaeeeeHjjH)(把|Ha(j)|和|H(ej)|画在图7-5上。由该图可看出,由于Ha(j)不是充分限带的,所以H(ej)产生了严重的频谱混叠失真。第7章 滤波器的设计方法 图 7-5 例7-1的幅频特性/T2/T2oo第7章 滤波器的设计方法(4)优缺点优缺点 从以上讨论可以看出,脉冲响应不变法使得数字滤波器的单位脉冲
18、响应完全模仿模拟滤波器的单位冲激响应,也就是时域逼近良好,而且模拟频率和数字频率之间呈线性关系=T。因而,一个线性相位的模拟滤波器(例如贝塞尔滤波器)通过脉冲响应不变法得到的仍然是一个线性相位的数字滤波器。第7章 滤波器的设计方法 脉冲响应不变法的最大缺点是有频率响应的混叠效应。所以,脉冲响应不变法只适用于限带的模拟滤波器(例如,衰减特性很好的低通或带通滤波器),而且高频衰减越快,混叠效应越小。至于高通和带阻滤波器,由于它们在高频部分不衰减,因此将完全混淆在低频响应中。如果要对高通和带阻滤波器采用脉冲响应不变法,就必须先对高通和带阻滤波器加一保护滤波器,滤掉高于折叠频率以上的频率,然后再使用脉
19、冲响应不变法转换为数字滤波器。当然这样会进一步增加设计复杂性和滤波器的阶数。第7章 滤波器的设计方法 7.1.2 双线性变换法双线性变换法(1)变换原理变换原理 脉冲响应不变法的主要缺点是产生频率响应的混叠失真。这是因为从S平面到平面是多值的映射关系所造成的。为了克服这一缺点,可以采用非线性频率压缩方法,将整个频率轴上的频率范围压缩到-/T/T之间,再用z=esT转换到Z平面上。也就是说,第一步先将整个S平面压缩映射到S1平面的-/T/T一条横带里;第二步再通过标准变换关系z=es1T将此横带变换到整个Z平面上去。这样就使S平面与Z平面建立了一一对应的单值关系,消除了多值变换性,也就消除了频谱
20、混叠现象,映射关系如图7-6所示。第7章 滤波器的设计方法 图 7-6 双线性变换的映射关系 o11Z平面jImzRez/Tj11/TS1平面S平面joo第7章 滤波器的设计方法 为了将S平面的整个虚轴j压缩到S1平面j1轴上的-/T到/T段上,可以通过以下的正切变换实现 2tan21TT(7-15)式中,T仍是采样间隔。当1由-/T经过0变化到/T时,由-经过0变化到+,也即映射了整个j轴。将式(7-15)写成 2/2/2/2/11112TjTjTjTjeeeeTj第7章 滤波器的设计方法 将此关系解析延拓到整个S平面和S1平面,令j=s,j1=s1,则得TsTsTsTsTsTseeTTsT
21、eeeeTs1111111122tanh2212/2/2/2/再将S1平面通过以下标准变换关系映射到Z平面:z=es1T 从而得到S平面和Z平面的单值映射关系为:11112zzTssTsTsTsTz222121(7-16)(7-17)式(7-16)与式(7-17)是S平面与Z平面之间的单值映射关系,这种变换都是两个线性函数之比,因此称为双线性变换。第7章 滤波器的设计方法(2)逼近的情况逼近的情况 式(7-15)与式(7-16)的双线性变换符合映射变换应满足的两点要求。(1)首先,把z=ej代入式(5-43),可得 jTjeeTsjj2tan2112(7-18)即S平面的虚轴映射到Z平面的单位
22、圆。第7章 滤波器的设计方法(2)其次,将s=+j代入式(7-18),得 jTjTz22因此 222222|TTz第7章 滤波器的设计方法 由此看出,当0时,|z|0时,|z|1。也就是说,S平面的左半平面映射到Z平面的单位圆内,S平面的右半平面映射到Z平面的单位圆外,S平面的虚轴映射到Z平面的单位圆上。因此,稳定的模拟滤波器经双线性变换后所得的数字滤波器也一定是稳定的。第7章 滤波器的设计方法(3)优缺点优缺点 双线性变换法与脉冲响应不变法相比,其主要的优点是避免了频率响应的混叠现象。这是因为S平面与Z平面是单值的一一对应关系。S平面整个j轴单值地对应于Z平面单位圆一周,即频率轴是单值变换关
23、系。这个关系如式(7-18)所示,重写如下:2tan2T上式表明,S平面上与Z平面的成非线性的正切关系,如图7-7所示。第7章 滤波器的设计方法 由图7-7看出,在零频率附近,模拟角频率与数字频率之间的变换关系接近于线性关系;但当进一步增加时,增长得越来越慢,最后当时,终止在折叠频率=处,因而双线性变换就不会出现由于高频部分超过折叠频率而混淆到低频部分去的现象,从而消除了频率混叠现象。第7章 滤波器的设计方法 图7-7 双线性变换法的频率变换关系 o第7章 滤波器的设计方法 但是双线性变换的这个特点是靠频率的严重非线性关系而得到的,如式(7-18)及图7-7所示。由于这种频率之间的非线性变换关
24、系,就产生了新的问题。首先,一个线性相位的模拟滤波器经双线性变换后得到非线性相位的数字滤波器,不再保持原有的线性相位了;其次,这种非线性关系要求模拟滤波器的幅频响应必须是分段常数型的,即某一频率段的幅频响应近似等于某一常数(这正是一般典型的低通、高通、带通、带阻型滤波器的响应特性),不然变换所产生的数字滤波器幅频响应相对于原模拟滤波器的幅频响应会有畸变,如图 7-8 所示。第7章 滤波器的设计方法 图 7-8 双线性变换法幅度和相位特性的非线性映射oooooo第7章 滤波器的设计方法 对于分段常数的滤波器,双线性变换后,仍得到幅频特性为分段常数的滤波器,但是各个分段边缘的临界频率点产生了畸变,
25、这种频率的畸变,可以通过频率的预畸来加以校正。也就是将临界模拟频率事先加以畸变,然后经变换后正好映射到所需要的数字频率上。第7章 滤波器的设计方法(4)模拟滤波器的数字化方法模拟滤波器的数字化方法 双线性变换法比起脉冲响应不变法来,在设计和运算上也比较直接和简单。由于双线性变换法中,s到z之间的变换是简单的代数关系,所以可以直接将式(7-15)代入到模拟系统传递函数,得到数字滤波器的系统函数,即 11112112)()(11zzTHsHzHazzTsa频率响应也可用直接代换的方法得到 2tan2)()(2tan2TjHjHeHTaj(7-19)(7-20)第7章 滤波器的设计方法 应用式(7-
展开阅读全文