正交试验设计及结果分析-课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《正交试验设计及结果分析-课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 正交 试验 设计 结果 分析 课件
- 资源描述:
-
1、正正 交交 试试 验验 设设 计计 对于单因素或两因素试验,因其因素少对于单因素或两因素试验,因其因素少 ,试验的,试验的设计设计 、实施与分析都比较简单、实施与分析都比较简单 。但在实际工作中。但在实际工作中 ,常,常常需要同时考察常需要同时考察 3 3个或个或3 3个以上的试验因素个以上的试验因素 ,若进行全,若进行全面试验面试验 ,则试验的规模将很大,则试验的规模将很大 ,往往因试验条件的限,往往因试验条件的限制而难于实施制而难于实施 。正交试验设计就是安排多因素试验。正交试验设计就是安排多因素试验 、寻求最优水平组合寻求最优水平组合 的一种高效率试验设计方法。的一种高效率试验设计方法。
2、下一张下一张 主主 页页 退退 出出 上一张上一张 1.1 1.1 正交试验设计的基本概念正交试验设计的基本概念 正交试验设计是利用正交表来安排与分析多因素正交试验设计是利用正交表来安排与分析多因素试验的一种设计方法。它是由试验因素的全部水平组合中,试验的一种设计方法。它是由试验因素的全部水平组合中,挑选部分有代表性的水平组合进行试验的,通过对这部分挑选部分有代表性的水平组合进行试验的,通过对这部分试验结果的分析了解全面试验的情况,找出最优的水平组试验结果的分析了解全面试验的情况,找出最优的水平组合。合。下一张下一张 主主 页页 退退 出出 上一张上一张 例如:设计一个三因素、例如:设计一个三
3、因素、3 3水平的试验水平的试验 A A因素,设因素,设A A1 1、A A2 2、A A3 3 3 3个水平;个水平;B B因素,设因素,设B B1 1、B B2 2、B B3 3 3 3个水平;个水平;C C因素,设因素,设C C1 1、C C2 2、C C3 3 3 3个水平,各因素的水平之间个水平,各因素的水平之间全部可能组合有全部可能组合有2727种种 。全面试验:可以分析各因素的效应全面试验:可以分析各因素的效应 ,交互作用,也可选,交互作用,也可选出最优水平组合。但全面试验包含的水平组合数较多(图示出最优水平组合。但全面试验包含的水平组合数较多(图示的的2727个节点),工作量大
4、个节点),工作量大 ,在有些情况下无法完成,在有些情况下无法完成 。若试验的主要目的是寻求最优水平组合,则可利用正交若试验的主要目的是寻求最优水平组合,则可利用正交表来设计安排试验。表来设计安排试验。下一张 主 页 上一张 全全 面面 试试 验验 法法 示示 意意 图图主 页 下一张 上一张 下一张 主 页 退 出 上一张 三因素、三水平全面试验方案三因素、三水平全面试验方案 正交试验设计的基本特点是:用部分试验来代替全正交试验设计的基本特点是:用部分试验来代替全面试验,通过对部分试验结果的分析,了解全面试验的面试验,通过对部分试验结果的分析,了解全面试验的情况。情况。正因为正交试验是用部分试
5、验来代替全面试验的,正因为正交试验是用部分试验来代替全面试验的,它不可能像全面试验那样对各因素效应、交互作用一一它不可能像全面试验那样对各因素效应、交互作用一一分析;当交互作用存在时,有可能出现交互作用的混杂。分析;当交互作用存在时,有可能出现交互作用的混杂。虽然正交试验设计有上述不足,但它能通过部分试验找虽然正交试验设计有上述不足,但它能通过部分试验找到最优水平组合到最优水平组合 ,因而很受实际工作者青睐。,因而很受实际工作者青睐。下一张下一张 主主 页页 退退 出出 上一张上一张 如对于上述如对于上述3 3因素因素3 3水平试验,若不考虑交互作用,水平试验,若不考虑交互作用,可利用正交表可
6、利用正交表L L9 9(3(34 4)安排,试验方案仅包含安排,试验方案仅包含9 9个水平组合,个水平组合,就能反映试验方案包含就能反映试验方案包含2727个水平组合的全面试验的情况,个水平组合的全面试验的情况,找出最佳的生产条件。找出最佳的生产条件。1.2 1.2 正交试验设计的基本原理正交试验设计的基本原理 下一张 主 页 上一张 正交设计就是从选优区全面试验点(水平组合)中正交设计就是从选优区全面试验点(水平组合)中挑选出有代表性的部分试验点(水平组合)来进行试验。挑选出有代表性的部分试验点(水平组合)来进行试验。上图中标有试验号的九个上图中标有试验号的九个“()”()”,就是利用正交表
7、,就是利用正交表L L9 9(3(34 4)从从2727个试验点中挑选出来的个试验点中挑选出来的9 9个试验点。即:个试验点。即:(1)A(1)A1 1B B1 1C C1 1 (2)A (2)A2 2B B1 1C C2 2 (3)A (3)A3 3B B1 1C C3 3(4)A(4)A1 1B B2 2C C2 2 (5)A (5)A2 2B B2 2C C3 3 (6)A (6)A3 3B B2 2C C1 1(7)A(7)A1 1B B3 3C C3 3 (8)A (8)A2 2B B3 3C C1 1 (9)A (9)A3 3B B3 3C C2 2下一张下一张 主主 页页 退退
8、出出 上一张上一张 以以上选择上选择 ,保证了,保证了A A因素的每个水平与因素的每个水平与B B因素、因素、C C因素因素的各个水平在试验中各搭配一次的各个水平在试验中各搭配一次 。对于。对于A A、B B、C 3C 3个因素个因素来说,来说,是在是在2727个全面试验点中选择个全面试验点中选择9 9个试验点个试验点 ,仅是全面,仅是全面试验的三分之一。试验的三分之一。从上图中可以看到,从上图中可以看到,9 9个试验点在选优区中分布是均衡个试验点在选优区中分布是均衡的,在立方体的每个平面上,都恰是的,在立方体的每个平面上,都恰是3 3个试验点;在立方体个试验点;在立方体的每条线上也恰有一个试
9、验点。的每条线上也恰有一个试验点。9 9个试验点均衡地分布于整个立方体内个试验点均衡地分布于整个立方体内 ,有很强的代表,有很强的代表性,能够比较全面地反映选优区内的基本情况。性,能够比较全面地反映选优区内的基本情况。下一张下一张 主主 页页 退退 出出 上一张上一张 1.3 1.3 正交表及其基本性质正交表及其基本性质1.3.1 1.3.1 正交表正交表 由于正交设计安排试验和分析试验结果都要用正交表,由于正交设计安排试验和分析试验结果都要用正交表,因此,我们先对正交表作一介绍。因此,我们先对正交表作一介绍。下表是一张正交表,记号为下表是一张正交表,记号为L L8 8(2(27 7),其中其
10、中“L L”代表正代表正交表;交表;L L右下角的数字右下角的数字“8”8”表示有表示有8 8行行 ,用这张正交表安,用这张正交表安排试验包含排试验包含8 8个处理个处理(水平组合水平组合);括号内的底数;括号内的底数“2”2”表表示因素的水平数,括号示因素的水平数,括号内内2 2的指数的指数“7”7”表示有表示有7 7列列 ,用这,用这张正交表最多可以安排张正交表最多可以安排7 7个个2 2水平因素。水平因素。下一张下一张 主主 页页 退退 出出 上一张上一张 下一张 主 页 退 出 上一张 L L8 8(2(27 7)正正 交交 表表 常用的正交表已由数学工作者制定出来,供进行正常用的正交
11、表已由数学工作者制定出来,供进行正交设计时选用。交设计时选用。2 2水平正交表水平正交表除除L L8 8(2(27)7)外,还有外,还有L L4 4(2(23 3)、L L1616(2(21515)等;等;3 3水平正交表有水平正交表有L L9 9(3(34 4)、L L2727(2(21313)等。等。1.3.2 1.3.2 正交表的基本性质正交表的基本性质 1.3.2.1 1.3.2.1 正交性正交性 (1 1)任一列中,各水平都出现,且出现的次数相等)任一列中,各水平都出现,且出现的次数相等 例:例:L L8 8(2(27 7)中不同数字只有中不同数字只有1 1和和2 2,它们各出现,它
12、们各出现4 4次;次;L L9 9(3(34 4)中不同数字有中不同数字有1 1、2 2和和3 3,它们各出现,它们各出现3 3次次 。下一张下一张 主主 页页 退退 出出 上一张上一张(2 2)任两列之间各种不同水平的所有可能组合都出现,)任两列之间各种不同水平的所有可能组合都出现,且对出现的次数相等且对出现的次数相等 例:例:L L8 8(2(27 7)中中(1,1),(1,2),(2,1),(2,2)(1,1),(1,2),(2,1),(2,2)各出现两次;各出现两次;L L9 9(3(34 4)中中 (1,1),(1,2),(1,3),(1,1),(1,2),(1,3),(2,1),(
13、2,2),(2,3),(3,1),(3,2),(3,3)(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)各出各出现现1 1次。即每个因素的一个水平与另一因素的各个水平所次。即每个因素的一个水平与另一因素的各个水平所有可能组合次数相等,表明任意两列各个数字之间的搭配有可能组合次数相等,表明任意两列各个数字之间的搭配是均匀的。是均匀的。下一张下一张 主主 页页 退退 出出 上一张上一张 下一张 主 页 上一张 下一张 主 页 上一张 下一张 主 页 上一张 在这在这9 9个水平组合中,个水平组合中,A A因素各水平下包括了因素各水平下包括了B B、C C因素因素的的3 3个水
14、平,虽然搭配方式不同,但个水平,虽然搭配方式不同,但B B、C C皆处于同等地位,皆处于同等地位,当比较当比较A A因素不同水平时,因素不同水平时,B B因素不同水平的效应相互抵因素不同水平的效应相互抵消消,C C因素不同水平的效应也相互抵消。所以因素不同水平的效应也相互抵消。所以A A因素因素3 3个水个水平间具有综合可比性。同样,平间具有综合可比性。同样,B B、C C因素因素3 3个水平间亦具有个水平间亦具有综合可比性。综合可比性。正交表的三个基本性质中,正交性是核心,正交表的三个基本性质中,正交性是核心,是基础,代表性和综合可比性是正交性的必然结是基础,代表性和综合可比性是正交性的必然
15、结果。果。下一张下一张 主主 页页 退退 出出 上一张上一张 1.4 1.4 正交表的类别正交表的类别 1 1、等水平正交表等水平正交表 各列水平数相同的正交表称为等水各列水平数相同的正交表称为等水平正交表。如平正交表。如L L4 4(2(23 3)、L L8 8(2(27 7)、L L1212(2(21111)等各列中的水平为等各列中的水平为2 2,称为称为2 2水平正交表;水平正交表;L L9 9(3(34 4)、L L2727(3(31313)等各列水平为等各列水平为3 3,称为,称为3 3水平正交表。水平正交表。2 2、混合水平正交表混合水平正交表 各列水平数不完全相同的正交表各列水平
16、数不完全相同的正交表称为混合水平正交表。称为混合水平正交表。如如L L8 8(4(42 24 4)表中有一列的水平数为表中有一列的水平数为4 4,有,有4 4列水平数为列水平数为2 2。也就是说该表可以安排一个。也就是说该表可以安排一个4 4水平因水平因素和素和4 4个个2 2水平因素。再如水平因素。再如L L1616(4(44 42 23 3),L L1616(4(42 21212)等都混等都混合水平正交表。合水平正交表。下一张下一张 主主 页页 退退 出出 上一张上一张 对于多因素试验,正交试验设计是简单常用的一种试对于多因素试验,正交试验设计是简单常用的一种试验设计方法,其设计基本程序如
17、图所示。正交试验设计的验设计方法,其设计基本程序如图所示。正交试验设计的基本程序包括基本程序包括试验方案设计试验方案设计及及试验结果分析试验结果分析两部分。两部分。2.1 2.1 试验方案设计试验方案设计 (1 1)明确试验目的,确定试验指标明确试验目的,确定试验指标 试验设计前必须明确试验目的,即本次试验要解决什么试验设计前必须明确试验目的,即本次试验要解决什么问题。试验目的确定后,对试验结果如何衡量,即需要确问题。试验目的确定后,对试验结果如何衡量,即需要确定出试验指标。试验指标可为定量指标,也可为定性指标。定出试验指标。试验指标可为定量指标,也可为定性指标。下一张 主 页 上一张 下一张
18、 主 页 上一张 下一张 主 页 上一张 一般为了便于试验结果的分析,定性指标可按相关的标一般为了便于试验结果的分析,定性指标可按相关的标准打分或模糊数学处理进行数量化,将定性指标定量化。准打分或模糊数学处理进行数量化,将定性指标定量化。(2 2)选因素、定水平,列因素水平表选因素、定水平,列因素水平表 根据专业知识、以往的研究结论和经验,从影响试验指根据专业知识、以往的研究结论和经验,从影响试验指标的诸多因素中,通过因果分析筛选出需要考察的试验因标的诸多因素中,通过因果分析筛选出需要考察的试验因素。一般确定试验因素时,素。一般确定试验因素时,应以对试验指标影响大的因素、应以对试验指标影响大的
19、因素、尚未考察过的因素、尚未完全掌握其规律的因素为先尚未考察过的因素、尚未完全掌握其规律的因素为先。试。试验因素选定后,根据所掌握的信息资料和相关知识,验因素选定后,根据所掌握的信息资料和相关知识,确定确定每个因素的水平,一般以每个因素的水平,一般以2-42-4个水平为宜个水平为宜。对主要考察的试。对主要考察的试验因素,可以多取水平,但不宜过多(验因素,可以多取水平,但不宜过多(6 6),否则试验次),否则试验次数骤增。数骤增。因素的水平间距,应根据专业知识和已有的资料,因素的水平间距,应根据专业知识和已有的资料,尽可能把水平值取在理想区域尽可能把水平值取在理想区域。下一张 主 页 上一张 四
20、因素、三水平的试验因素水平表四因素、三水平的试验因素水平表水平水平试试 验验 因因 素素ABCD1 23 正交表的选择是正交试验设计的首要问题。确定了因正交表的选择是正交试验设计的首要问题。确定了因素及其水平后,根据因素、水平及需要考察的交互作用的素及其水平后,根据因素、水平及需要考察的交互作用的多少来选择合适的正交表。多少来选择合适的正交表。正交表的选择原则是在能够安正交表的选择原则是在能够安排下试验因素和交互作用的前提下,尽可能选用较小的正排下试验因素和交互作用的前提下,尽可能选用较小的正交表,以减少试验次数。交表,以减少试验次数。一般情况下,试验因素的水平数应等于正交表中的水平一般情况下
21、,试验因素的水平数应等于正交表中的水平数;因素个数(包括交互作用)应不大于正交表的列数;数;因素个数(包括交互作用)应不大于正交表的列数;最低的试验次数最低的试验次数(行数行数)(每列水平数一每列水平数一1)+l 1)+l 下一张 主 页 上一张 下一张 主 页 上一张 例例:选择一:选择一4 4个个3 3水平因素试验的正交表水平因素试验的正交表 可以选用可以选用L L9 9(3(34 4)或或L L2727(3(31313)(A A)不考察因素间的交互作用,宜选用)不考察因素间的交互作用,宜选用L L9 9(3 34 4)。)。(B B)考察交互作用,则应选用)考察交互作用,则应选用L L2
展开阅读全文