数字逻辑设计及应用-9课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《数字逻辑设计及应用-9课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数字 逻辑设计 应用 课件
- 资源描述:
-
1、Chapter Chapter 4 4 Combinational Logic Combinational Logic Design PrinciplesDesign Principles(组合逻辑设计原理组合逻辑设计原理)Basic Logic Algebra (逻辑代数基础逻辑代数基础)Combinational-Circuit Analysis (组合电路分析组合电路分析)Combinational-Circuit Synthesis (组合电路综合组合电路综合)Digital Logic Design and Application(数字逻辑设计及应用数字逻辑设计及应用)1 1Digi
2、tal Logic Design and Application(数字逻辑设计及应用数字逻辑设计及应用)Review of 4.1 Switching Algebra(开关代数内容回顾)1、Axioms(公理)2、Single-Variable Theorems (单变量开关代数定理)3、Two-and Three-Variable Theorems (二变量或三变量开关代数定理)需要特别记忆:A+BC=(A+B)(A+C)AB+AC+BC=AB+AC 补充:代入定理2 24、n-Variable Theorems(n变量定理变量定理)Generalized Idempotency (广义同一
3、律广义同一律)Shannons Expansion Theorems (香农展开定理香农展开定理)Demorgans Theorems 摩根定理(反演)摩根定理(反演)Duality(对偶对偶)X+X+X=XX X X=X),(F21nXXX),1(21nXXFX ),0(21nXXFX Review of 4.1 Switching AlgebraReview of 4.1 Switching Algebra(开关代数内容回顾开关代数内容回顾)3 3Digital Logic Design and Application(数字逻辑设计及应用数字逻辑设计及应用)与与或,或,0 1变量取反变量取
4、反 F(X1,X2,Xn)=FD(X1,X2,Xn)与与或,或,0 1Review of 4.1 Switching AlgebraReview of 4.1 Switching Algebra(开关代数内容回顾开关代数内容回顾)n-Variable Theorems(n变量定理变量定理)Generalized Idempotency (广义同一律广义同一律)Shannons Expansion Theorems (香农展开定理香农展开定理)Demorgans Theorems 摩根定理(反演)摩根定理(反演)Duality(对偶对偶)4 4Digital Logic Design and A
5、pplication(数字逻辑设计及应用数字逻辑设计及应用)G1ABFA B FL L LL H LH L LH H HElectrical FunctionTable(电气功能表电气功能表)A B F0 0 00 1 01 0 01 1 1Positive-LogicConventionA B F1 1 11 0 10 1 10 0 0Negative-LogicConventionPositive-Logic (正逻辑正逻辑):F=ABNegative-Logic (负逻辑负逻辑):F=A+BThe relationship of Positive-Logic Convention and
6、 Negative-Logic Convention are Duality(正逻辑约定和负逻辑约定互为对偶关系正逻辑约定和负逻辑约定互为对偶关系)5 5Digital Logic Design and Application(数字逻辑设计及应用数字逻辑设计及应用)举重裁判电路举重裁判电路Y=F(A,B,C)=A(B+C)ABYC逻逻辑辑函函数数逻辑图逻辑图开关开关ABCABC1 1表闭合表闭合指示灯指示灯1 1 表亮表亮0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 A B CY真值表真值表补充:逻辑函数及其表示方法补充:逻辑函数及其表示方法&
7、1ABCY000001116 67Gates vs.switchesGates vs.switchesNotice Boolean algebra enables easy capture as equation and conversion to circuitHow design with switches?7 78Gates vs.switchesGates vs.switchesOf course,logic gates are built from switches,but we think at level of logic gates,not switchesw=NOT(s)AN
8、D kakswBelt WarnSeatbeltBelt Warnw1001sk8 89Some Gate-Based Circuit Drawing Some Gate-Based Circuit Drawing ConventionsConventionsnoyesnot okokxyFnoyes9 910Boolean AlgebraBoolean AlgebraBy defining logic gates based on Boolean algebra,we can use algebraic methods to manipulate circuitsNotation:Writi
9、ng a AND b,a OR b,NOT(a)is cumbersomeUse symbols:a*b(or just ab),a+b,and a2.5101011Boolean AlgebraBoolean AlgebraOriginal:w=(p AND NOT(s)AND k)OR t New:w=psk+tlSpoken as“w equals p and s prime and k,or t”lOr just“w equals p s prime k,or t”ls known as“complement of s”While symbols come from regular a
10、lgebra,dont say“times”or“plus”lproduct and sum are OK and commonly used2.511 1112Boolean AlgebraBoolean AlgebraBoolean algebra precedence,highest precedence first.Symbol Name Description ()Parentheses Evaluate expressions nested in parentheses first NOT Evaluate from left to right *AND Evaluate from
11、 left to right +OR Evaluate from left to right 2.5121213Boolean Algebra TerminologyBoolean Algebra TerminologyExample equation:F(a,b,c)=abc+abc+ab+cVariableRepresents a value(0 or 1)Three variables:a,b,and cLiteralAppearance of a variable,in true or complemented formNine literals:a,b,c,a,b,c,a,b,and
12、 c131314Boolean Algebra TerminologyBoolean Algebra TerminologyProduct termProduct of literalsFour product terms:abc,abc,ab,cSum-of-productsEquation written as OR of product terms onlyAbove equation is in sum-of-products form.“F=(a+b)c+d”is not.1414Combinational logic The output is determined only by
13、 its input.Output can be changed when input changed.151516Representations of Boolean FunctionsRepresentations of Boolean Functions2.6aFCircuit 2(d)English 1:F outputs 1 when a is 0 and b is 0,or when a is 0 and b is 1.English 2:F outputs 1 when a is 0,regardless of b s value(a)(b)a0011b0101F1100abFC
14、ircuit 1(c)The function FTruth tableEquation 2:F(a,b)=a Equation 1:F(a,b)=a b +a b161617Representations of Boolean FunctionsRepresentations of Boolean FunctionsA function can be represented in different waysAbove shows seven representations of the same functions F(a,b),using four different methods:E
15、nglish Equation Circuit and Truth Table2.6a1717Representations of logic functionsTruth tableTiming diagramLogic equationsLogic circuits1818Truth tableLeft:the input combinations in binary order Right:the output for the input1919Logic design:Construct a Truth table A device with majority judge functi
16、on output the majority input state.2020 Full adder add three input numbers to get their sum.Logic design:Construct a Truth table2121 4-bits prime-number detector when input is(1,2,3,5,7,11,13),the output is 1,otherwise the output is 0.Logic design:Construct a Truth table2222 4-bit Binary to Gray cod
17、e converter change binary input to Gray code output.Logic design:Construct a Truth table232324Converting among RepresentationsConverting among RepresentationsCan convert from any representation to anotherCommon conversionsEquation to circuit Circuit to equationStart at inputs,write expression of eac
18、h gate outputcchF=c(h+p)ph+pCircuitsEquationsTruth table341265242425Converting among RepresentationsConverting among RepresentationsMore common conversionsTruth table to equation(which we can then convert to circuit)Easyjust OR each input term that should output 1Equation to truth tableEasyjust eval
19、uate equation for each input combination(row)Creating intermediate columns helpsaCircuitsEquationsTruth table341265252526Example:Converting from Circuit to Example:Converting from Circuit to Truth TableTruth TableFirst convert to circuit to equation,then equation to tableFacbabc(ab)(ab)ca00001111c01
20、010101b00110011F10101000ab00000011(ab)11111100c10101010InputsOutputs262627Standard Representation:Truth TableStandard Representation:Truth TableHow can we determine if two functions are the same?Recall automatic door exampleSame as f=hc+hpc?Used algebraic methodsBut if we failed,does that prove not
21、equal?No.Solution:Convert to truth tables Only ONE truth table representation of a given functionStandard representationfor given function,only one version in standard form exists272728Standard Representation:Truth TableStandard Representation:Truth Tablef=c hp+c hp +c h f=c h(p+p)+c h p f=c h(1)+c
22、h p f=c h+c h p(what if we stopped here?)f=hc +h pc a0011b0101F1101F=ab+aa0011b0101F1101F=a b +a b+abQ:Determine if F=ab+a is samefunction as F=a b+a b+ab,by converting each to truth table firstSame2828Logic Expression to Truth TableLogic Expression to Truth Table(逻辑表达式逻辑表达式 真值表真值表)Y=(B+C)(A+B+C)0 0
展开阅读全文