基于多目标稳健性优化方法的SUV车身结构轻量化设计简课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《基于多目标稳健性优化方法的SUV车身结构轻量化设计简课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于 多目标 稳健 优化 方法 SUV 车身 结构 量化 设计 课件
- 资源描述:
-
1、基于多目标稳健性优化方法的基于多目标稳健性优化方法的SUVSUV车身结构轻量化设计车身结构轻量化设计 答辩人答辩人:苏占龙苏占龙导导 师师:王王 霄霄 教授教授专专 业业:机机 械械 工工 程程基于多目标稳健性优化方法的基于多目标稳健性优化方法的SUV车身结构轻量化设计车身结构轻量化设计汽车工程汽车工程领域领域三大三大主题主题安全安全节能节能环保环保 课题研究背景及课题提出课题研究背景及课题提出最为有效的途径最为有效的途径汽车轻量化汽车轻量化提高汽车碰撞安全性提高汽车碰撞安全性1.降低燃油消耗降低燃油消耗2.减少尾气排放减少尾气排放车辆碰撞类型车辆碰撞类型正碰正碰偏置碰偏置碰侧碰侧碰后碰后碰侧
2、翻侧翻轻质材料轻质材料先进加工工艺先进加工工艺结构优化结构优化实现轻量化的方法实现轻量化的方法同时保证1、致伤率64.5%,居第一位2、致死率35%,仅次于正碰p实现轻量化不能以牺牲安全性为代价,因此要同时保证碰撞安全性同时保证被动安全被动安全主动安全主动安全基于多目标稳健性优化方法的基于多目标稳健性优化方法的SUV车身结构轻量化设计车身结构轻量化设计 课题课题研究现状及研究现状及课题提出课题提出汽车结构轻量化汽车结构轻量化单目标确定性优化多目标确定性优化多目标稳健性优化以轻量化为目标。以轻量化与提高碰撞安全性为目标;同时保证其他方面性能。以轻量化、提高碰撞安全性与提高稳健性为目标提高稳健性为
3、目标;同时保证其他方面性能。同时考虑由于同时考虑由于加工不确定性加工不确定性引起引起的性能波的性能波动动少提高汽车碰撞安全性提高汽车碰撞安全性引入近似模型基于多目标稳健性优化方法的基于多目标稳健性优化方法的SUV车身结构轻量化设计车身结构轻量化设计 汽车侧面碰撞流程自动化系统的开发汽车侧面碰撞流程自动化系统的开发2 SUV有限元模型的建立与有限元分析有限元模型的建立与有限元分析3 基于多目标稳健性优化方法的车身轻量化基于多目标稳健性优化方法的车身轻量化设计设计4 总结与展望总结与展望 本文主要研究内容本文主要研究内容1基于多目标稳健性优化方法的基于多目标稳健性优化方法的SUV车身结构轻量化设计
4、车身结构轻量化设计汽车侧面碰撞流程自动化系统的开发整车侧面碰撞有限元模型的建立车门静态有限元模型的建立Hypermesh通用前处理平台SUV整车侧面碰撞性能分析SUV车门模态性能分析SUV车门刚度性能分析汽车侧面碰撞流程自动化系统平台初选变量参数试验设方法进行灵敏度分析,筛选变量最终变量基于拉丁超立方试验设计方法的样本采样响应面近似模型与Kriging近似模型的建立基于多学科多目标确定性优化的车身结构轻量化基于蒙特卡洛抽样的可靠性分析与质量水平检查基于多学科多目标稳健性优化的车身结构轻量化设计初初步步了了解解初初始始设设计计性性能能总结与展望 本文技术路线本文技术路线基于多目标稳健性优化方法的
5、基于多目标稳健性优化方法的SUV车身结构轻量化设计车身结构轻量化设计开发开发平台平台Windows 7/Windows XP-(TCL/TK脚本语言脚本语言)Hyperworks(Hypermesh,Hyperview)Process Manager(Process Manager,Process Studio、Framework)基于基于Hyperworks 的汽车侧面碰撞分析流程自动化系统的汽车侧面碰撞分析流程自动化系统材 料、材 料、载 荷 数载 荷 数据库据库1基于多目标稳健性优化方法的基于多目标稳健性优化方法的SUV车身结构轻量化设计车身结构轻量化设计1图1.1 侧面碰撞分析流程自动
6、化系统流程树l通用前处理:通用前处理:1、导入模型,2、自动抽取中面3、赋予属性与材料l建立连接:建立连接:1、焊点2、螺栓3、粘胶l建立接触与刚性墙:建立接触与刚性墙:1、刚性墙2、自接触3、焊点接触4、粘胶接触l边界条件:边界条件:1、初始 速度2、重力场l控制卡片:控制卡片:1、结束时间2、控制时间步3、单元控制4、接触、沙漏、能量控制等l输出卡片:输出卡片:1、二进制文件 2、输出控制开发开发流程树流程树基于多目标稳健性优化方法的基于多目标稳健性优化方法的SUV车身结构轻量化设计车身结构轻量化设计自动抽取中面工具材料与载荷数据库钣金件:N零件号_项目代号_T厚度*100;实体件:S零件
7、号_项目代号 1CAD模型中的连接信息 CAE模型中的连接信息自动建立连接(1)焊点连接(2)螺栓连接(3)粘胶等其他连接(粘胶、缝焊、铆接)基于多目标稳健性优化方法的基于多目标稳健性优化方法的SUV车身结构轻量化设计车身结构轻量化设计建立连接的用户主界面n成果:实现了实现了CAD模型导入、抽取中面、建立连接、建立刚性墙与接触、施加边界条件、定义控制卡片与输出卡片的流流程自动化程自动化,大幅度提高了侧面碰撞有限元建模的效率大幅度提高了侧面碰撞有限元建模的效率。1基于多目标稳健性优化方法的基于多目标稳健性优化方法的SUV车身结构轻量化设计车身结构轻量化设计SUV整车有限元模型的建立整车有限元模型
8、的建立CAD模型归类与导入电器底盘车身附件抽取中面网格划分网格质量检查整车模型装配连接螺栓粘胶焊接万向铰等其它基于include文件的整车网格材料、单元属性定义属性卡片定义材料卡片定义材料曲线输入积分类型选择YN刚性墙与接触的建立几何清理粘胶、焊点等其他接触自接触刚性墙控制卡片单元控制时间步控制结束时间沙漏控制等输出卡片二进制文件输出频率d3plot文件输出其他文件输出控制初始条件重力加速度初始速度导出子系统k文件2红色框-流程自动化;网格划分手动完成基于多目标稳健性优化方法的基于多目标稳健性优化方法的SUV车身结构轻量化设计车身结构轻量化设计SUV整车有限元模型的建立整车有限元模型的建立底盘
9、车门白车身2基于多目标稳健性优化方法的基于多目标稳健性优化方法的SUV车身结构轻量化设计车身结构轻量化设计SUV整车有限元模型的建立整车有限元模型的建立整车有限元模型整车有限元模型2基于多目标稳健性优化方法的基于多目标稳健性优化方法的SUV车身结构轻量化设计车身结构轻量化设计SUV整车侧面碰撞性能分析整车侧面碰撞性能分析(1)碰撞系统总能量分析碰撞系统能量曲线(2)整车变形分析沙漏能与滑移界面能占总能量的百分比分别为4.020%和2.269%,小于10%的要求前门、B柱、中门下部发生严重变形,p分析可靠p通过提高B柱、前门、中门附件结构的强度改善碰撞安全性能2基于多目标稳健性优化方法的基于多目
10、标稳健性优化方法的SUV车身结构轻量化设计车身结构轻量化设计SUV整车侧面碰撞性能分析整车侧面碰撞性能分析(3)前门与B柱测量点侵入量与侵入速度分析测量点编号代号测量点最大侵入量/mm代号测量点最大侵入速度/ms-1分析值目标要求分析值目标要求P1Bd1138.387150Bv18.153 8.5P2Bd2154.249160Bv27.863 8.5P3Bd3176.901180Bv37.715 9.5P4Bd4184.464190Bv48.003 9.5P5Bd5193.171190Bv59.76210.5P6Dd649.364100Bv65.402 7.5P7Dd1180.978190Dv
11、18.851 9.5P8Dd2189.070200Dv29.46810.5P9Dd3182.050210Dv310.24610.5P10Dd4195.853210Dv410.62610.5P11Dd5186.794190Dv510.04410.5测量点位置测量点侵入量曲线测量点侵入速度曲线测量点最大侵入量与最大侵入速度表2基于多目标稳健性优化方法的基于多目标稳健性优化方法的SUV车身结构轻量化设计车身结构轻量化设计SUV车门模态性能分析车门模态性能分析前门一阶阵型中门一阶阵型前门二阶阵型中门二阶阵型前门三阶阵型中门三阶阵型车门前三阶模态振型图2基于多目标稳健性优化方法的基于多目标稳健性优化方法
12、的SUV车身结构轻量化设计车身结构轻量化设计SUV车门模态性能分析车门模态性能分析车门模态阶数代号分析值/Hz目标要求/Hz振型描述前门1Fmode132.6730一阶扭转模态2Fmode241.8535窗框+外板局部模态3Fmode366.0245内板局部模态中门1Rmode130.8130一阶扭转模态2Rmode237.5435内板+外板局部模态3Rmode348.0145内板局部模态车门前三阶模态频率与振型描述SUV车门刚度性能分析车门刚度性能分析窗框侧弯工况Y向位移云图 下垂工况Z向位移云图 (1)前门刚度p满足要求,存在轻量化设计空间2基于多目标稳健性优化方法的基于多目标稳健性优化方
13、法的SUV车身结构轻量化设计车身结构轻量化设计SUV车门刚度性能分析车门刚度性能分析扭转工况Y向位移云图(窗框后下角)扭转工况Y向位移云图(车门后下角)(1)前门刚度前门刚度各工况加载位置代号分析位移值/mmLCBZ201301目标位移值/mm窗框刚度窗框后上角Fstiffness14.3208扭转刚度窗框后下角(上扭)Fstiffness23.5647车门后下角(下扭)Fstiffness33.7387下垂刚度锁芯处Fstiffness41.8355前门刚度分析结果汇总表p远低于目标值,存在较大轻量化空间2基于多目标稳健性优化方法的基于多目标稳健性优化方法的SUV车身结构轻量化设计车身结构轻
14、量化设计SUV车门刚度性能分析车门刚度性能分析(2)中门刚度侧弯工况Y向位移云图(窗框前上角)侧弯工况Y向位移云图(窗框后上角)下垂工况Z向位移云图(窗框前上角)下垂工况Z向位移云图(窗框后上角)2基于多目标稳健性优化方法的基于多目标稳健性优化方法的SUV车身结构轻量化设计车身结构轻量化设计(2)中门刚度下垂工况Z向位移云图 下垂工况Z向位移云图 (窗框前上角)(窗框后上角)中门刚度加载位置代号位移值/mmSQGM目标值/mm余量系数窗框刚度窗框前上角chuangkuang_L7.158100.40窗框后上角chuangkuang_R5.44880.47扭转刚度车窗上角(上扭)niuzhuan
15、_up12.736160.26车门下角(下扭)niuzhuan_down4.9446.50.32下垂刚度前锁芯处chuizhi_F0.0581.524.00后锁芯处chuizhi_R0.189314.79中门刚度分析结果汇总表SUV车门刚度性能分析车门刚度性能分析p远离目标值,存在较大的轻量化空间2基于多目标稳健性优化方法的基于多目标稳健性优化方法的SUV车身结构轻量化设计车身结构轻量化设计多目标稳健性优化方案的提出多目标稳健性优化方案的提出3多目标稳健性优化方案提出多目标稳健性优化方案提出子模型建立子模型建立初始设计变量初始设计变量变量筛选变量筛选(参数试验设计)(参数试验设计)最优拉丁超立
16、次方实验设计最优拉丁超立次方实验设计构造构造 Kriging+响应面近似模型响应面近似模型增加样本点增加样本点精度检验精度检验NSGA-,NCGA,AMGA 多目标确定性优化多目标确定性优化质量水平质量水平检验检验稳健性多目标优化稳健性多目标优化稳健性优化方案确定稳健性优化方案确定更新近似模型更新近似模型各优化算法的优化各优化算法的优化结果与可靠性对比结果与可靠性对比蒙特卡洛抽样蒙特卡洛抽样简化模型,降低单次抽样计算时间减少变量,降低抽样次数最终设计变量最终设计变量可靠性分析选择稳健性优化算法选择稳健性优化算法基于多目标稳健性优化方法的基于多目标稳健性优化方法的SUV车身结构轻量化设计车身结构
17、轻量化设计侧面碰撞子模型的建立与验证侧面碰撞子模型的建立与验证子模型建立流程图子模型边界条件提取p保证精度的条件保证精度的条件下,降低了计算代下,降低了计算代价价3基于多目标稳健性优化方法的基于多目标稳健性优化方法的SUV车身结构轻量化设计车身结构轻量化设计侧面碰撞子模型的验证侧面碰撞子模型的验证子模型子模型整车模型整车模型子模型子模型整车整车模型模型整车整车模型模型子模型子模型子模型子模型整车模型整车模型子模型与整车模型各项指标对比验证3基于多目标稳健性优化方法的基于多目标稳健性优化方法的SUV车身结构轻量化设计车身结构轻量化设计31-前门内板(前)2-前门外板 3-前门内板(后)4-前门腰
18、线加强件 5-前门防撞梁(上)6-前门防撞梁(下)7-中门铰链加强件 8-中门防撞梁(下)9-中门防撞梁(中)10-中门防撞梁(上)11-中门外板 12-前门锁加强件 13-B柱外加强板 14-中门内板 15-中门锁加强件 16-B柱内加强板图4.11 设计变量分布图初始设计变量的选择初始设计变量的选择基于多目标稳健性优化方法的基于多目标稳健性优化方法的SUV车身结构轻量化设计车身结构轻量化设计初始设计变量的选择初始设计变量的选择变量名称变量代号初始值/mm取值范围/mm标准差/mmB柱内加强板B11.20.8 1.0 1.2 1.4 1.5 1.60.01B柱外加强板B21.40.8 1.0
19、 1.2 1.4 1.5 1.60.01前门内板(后)D10.70.5 0.6 0.7 0.8 1.0 1.20.01前门内板(前)D21.20.8 1.0 1.2 1.4 1.5 1.60.01前门外板D30.80.6 0.7 0.8 1.0 1.2 1.40.01中门外板D40.80.6 0.7 0.8 1.0 1.2 1.40.01中门内板D50.70.5 0.6 0.7 0.8 1.0 1.20.01前门防撞梁(上)F10.80.6 0.7 0.8 1.0 1.2 1.40.01前门防撞梁(下)F21.61.2 1.4 1.5 1.6 1.8 2.00.01中门防撞梁(上)F31.61
20、.2 1.4 1.5 1.6 1.8 2.00.01中门防撞梁(中)F40.70.5 0.6 0.7 0.8 1.0 1.20.01中门防撞梁(下)F51.61.2 1.4 1.5 1.6 1.8 2.00.01前门腰线加强板R10.80.6 0.7 0.8 1.0 1.2 1.40.01前门锁加强件S11.40.8 1.0 1.2 1.4 1.5 1.60.01中门锁加强件S21.20.8 1.0 1.2 1.4 1.5 1.60.01中门铰链加强件H11.51.0 1.2 1.4 1.5 1.6 1.8 0.01解决方案解决方案(1)通过)通过ps筛选试验,减少变量筛选试验,减少变量(2)
21、通过试验设计方法采集样本,建立近似模型,)通过试验设计方法采集样本,建立近似模型,代替有限元模型参与优化代替有限元模型参与优化设计变量相关参数加工不确加工不确定性定性p变量多,优化计算代价仍然高3基于多目标稳健性优化方法的基于多目标稳健性优化方法的SUV车身结构轻量化设计车身结构轻量化设计设计变量筛选试验设计变量筛选试验PS设计样本点采样矩阵设计变量对侵入量的主效应图设计变量对侵入速度的主效应图设计变量对内能主效应图 设计变量对质量的主效应图 设计变量对吸收内能的Pareto图设计变量对整车质量的Pareto图3p筛选出灵敏度较高的10组变量,用于后续样本采集基于多目标稳健性优化方法的基于多目
22、标稳健性优化方法的SUV车身结构轻量化设计车身结构轻量化设计设计样本采集设计样本采集(1)试验设计方法选择及样本点采集)试验设计方法选择及样本点采集采样方法:最优拉丁超立方采样方法:最优拉丁超立方试验设计样本点数:样本点数:90响应:质量,吸收的内能响应:质量,吸收的内能E、侵入量、侵入速度、车门前三阶模态、车门刚度等等40个响应个响应。3基于多目标稳健性优化方法的基于多目标稳健性优化方法的SUV车身结构轻量化设计车身结构轻量化设计近似模型建立近似模型建立412122211212221111312152123-3117.1188 15113.5554-2945.2983-2277.0634-6
展开阅读全文