高二数学 曲线的参数方程学习培训模板课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高二数学 曲线的参数方程学习培训模板课件.ppt》由用户(林田)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高二数学 曲线的参数方程学习培训模板课件 数学 曲线 参数 方程 学习 培训 模板 课件 下载 _其他_数学_高中
- 资源描述:
-
1、11/14/2022郑平正 制作曲线的参数方程曲线的参数方程高二数学高二数学 选修选修4-4高二数学高二数学 选修选修4-4 第二讲第二讲 参数方程参数方程1.1.参数方程的概念参数方程的概念1、参数方程的概念:、参数方程的概念:如图如图,一架救援飞机在离灾区地面一架救援飞机在离灾区地面500m高处以高处以100m/s的速度作水平直线飞行的速度作水平直线飞行.为使投放救援物资准确落于灾为使投放救援物资准确落于灾区指定的地面区指定的地面(不记空气阻力不记空气阻力),飞行员应如何确定投放飞行员应如何确定投放时时机呢?时时机呢?提示:提示:即求飞行员在离救援点的水平距离即求飞行员在离救援点的水平距离
2、多远时,开始投放物资?多远时,开始投放物资?救援点救援点投放点投放点1、参数方程的概念:、参数方程的概念:xy Ao设飞机在点设飞机在点A将物资投出机舱,将物资投出机舱,记物资投出机舱时为时刻记物资投出机舱时为时刻0,在时刻,在时刻t时物资时物资的位置为的位置为M(x,y).则则x表示物资的水平位移量,表示物资的水平位移量,y表示物资距地面的高度。表示物资距地面的高度。如图如图,一架救援飞机在离灾区地面一架救援飞机在离灾区地面500m高处以高处以100m/s的速度作水平直线飞行的速度作水平直线飞行.为使投放救援物资准确落于灾为使投放救援物资准确落于灾区指定的地面区指定的地面(不记空气阻力不记空
3、气阻力),飞行员应如何确定投放飞行员应如何确定投放时机呢?时机呢?在经过飞行航线(直线)且垂直于地平面的平面上建立在经过飞行航线(直线)且垂直于地平面的平面上建立平面直角坐标系,其中平面直角坐标系,其中x轴为地平面与这个平面的交线,轴为地平面与这个平面的交线,y轴经过点轴经过点A.由于水平位移量由于水平位移量x与高度与高度y 是两种不是两种不同的运动得到的,因此直接建立同的运动得到的,因此直接建立x,y所要满足的关系式并不容易。所要满足的关系式并不容易。1、参数方程的概念:、参数方程的概念:xy500o物资投出机舱后,它的运动由下列两种运动合成:物资投出机舱后,它的运动由下列两种运动合成:(1
4、)沿)沿ox作初速度为作初速度为100m/s的匀速直线运动;的匀速直线运动;如图如图,一架救援飞机在离灾区地面一架救援飞机在离灾区地面500m高处以高处以100m/s的速度作水平直线飞行的速度作水平直线飞行.为使投放救援物资准确落于灾为使投放救援物资准确落于灾区指定的地面区指定的地面(不记空气阻力不记空气阻力),飞行员应如何确定投放飞行员应如何确定投放时机呢?时机呢?(2)沿)沿oy反方向作自由落体运动。反方向作自由落体运动。xy500o0,y 令10.10.ts得100,1010.xtxm代入得.1010 所m以,飞行员在离救援点的水平距离约为时投放物资,可以使其准确落在 指定位置 txy解
5、:物资出舱后,设在时刻,水平位移为,垂直高度为,所以2100,1500.2xtygt)2(g=9.8m/s1、参数方程的概念:、参数方程的概念:如图如图,一架救援飞机在离灾区地面一架救援飞机在离灾区地面500m高处以高处以100m/s的速度作水平直线飞行的速度作水平直线飞行.为使投放救援物资准确落于灾为使投放救援物资准确落于灾区指定的地面区指定的地面(不记空气阻力不记空气阻力),飞行员应如何确定投放飞行员应如何确定投放时机呢?时机呢?一、方程组有一、方程组有3个变量,其中的个变量,其中的x,y表示点的表示点的坐标,变量坐标,变量t叫做参变量,而且叫做参变量,而且x,y分别是分别是t的的函数。函
6、数。二、由物理知识可知,物体的位置由时间二、由物理知识可知,物体的位置由时间t唯唯一决定,从数学角度看,这就是点一决定,从数学角度看,这就是点M的坐标的坐标x,y由由t唯一确定,这样当唯一确定,这样当t在允许值范围内连在允许值范围内连续变化时,续变化时,x,y的值也随之连续地变化,于是的值也随之连续地变化,于是就可以连续地描绘出点的轨迹。就可以连续地描绘出点的轨迹。三、平抛物体运动轨迹上的点与满足方程组三、平抛物体运动轨迹上的点与满足方程组的有序实数对(的有序实数对(x,y)之间有一一对应关系。)之间有一一对应关系。(),().xf tyg t(2)并且对于并且对于t的每一个允许值的每一个允许
7、值,由方程组由方程组(2)所确定的点所确定的点M(x,y)都在这条曲线上都在这条曲线上,那么方程那么方程(2)就叫做这条曲线的就叫做这条曲线的参数方程参数方程,联系变数联系变数x,y的变数的变数t叫做参变数叫做参变数,简称参数简称参数.相对于参数方程而言,直接给出点的坐标间关系相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程。的方程叫做普通方程。关于参数几点说明:关于参数几点说明:参数是联系变数参数是联系变数x,y的桥梁的桥梁,1、参数方程的概念:、参数方程的概念:一般地一般地,在平面直角坐标系中在平面直角坐标系中,如果曲线上任意一点的如果曲线上任意一点的坐标坐标x,y都是某个变数
8、都是某个变数t的函数的函数1.参数方程中参数可以有物理意义参数方程中参数可以有物理意义,几何意义几何意义,也可以没有明显意义。也可以没有明显意义。2.同一曲线选取参数不同同一曲线选取参数不同,曲线参数方程形式也不一样曲线参数方程形式也不一样3.在实际问题中要确定参数的取值范围在实际问题中要确定参数的取值范围 一架救援飞机以一架救援飞机以100m/s的速度作水平直线飞行的速度作水平直线飞行.在离灾在离灾区指定目标区指定目标1000m时投放救援物资(不计空气阻力时投放救援物资(不计空气阻力,重重力加速力加速 g=10m/s)问此时飞机的飞行高度约是多少?问此时飞机的飞行高度约是多少?(精确到(精确
9、到1m)变式变式:例例1:已知曲线已知曲线C的参数方程是的参数方程是 (1)判断点)判断点M1(0,1),M2(5,4)与曲线与曲线C的位置关系;的位置关系;(2)已知点)已知点M3(6,a)在曲线在曲线C上上,求求a的值。的值。23,()21.xttyt为参数解解:(:(1)把点把点M1(0,1)代入方程组,解得:代入方程组,解得:t=0,因此因此M1在曲线在曲线C上。上。把点把点M2(5,4)代入方程组,方程组无解,代入方程组,方程组无解,因此因此M2不在曲线不在曲线C上。上。(2)因为)因为M3(6,a)在曲线在曲线C上。上。263,21.tat解得:解得:t=2,a=9a=92、方程、
10、方程 所表示的曲线上一点的坐标是所表示的曲线上一点的坐标是()sin(cosxy为参数)A、(、(2,7););B、C、D、(、(1,0)1 2(,);3 31 1(,);2 21、曲线、曲线 与与x轴的交点坐标是轴的交点坐标是()A、(、(1,4););B、C、D、21(43xttyt 为 参 数)25(,0);16(1,3);25(,0);16BD训练1:已知曲线已知曲线C的参数方程是的参数方程是 点点M(5,4)在该在该 曲线上曲线上.(1)求常数)求常数a;(2)求曲线)求曲线C的普通方程的普通方程.212,().xttyat 为参数,aR解解:(1)由题意可知由题意可知:1+2t=5
11、at2=4解得解得:a=1t=2 a=1(2)由已知及由已知及(1)可得可得,曲线曲线C的方程为的方程为:x=1+2t y=t2由第一个方程得由第一个方程得:12xt代入第二个方程得代入第二个方程得:21(),2xy2(1)4xy为所求.训练2:思考题:思考题:动点动点M作等速直线运动作等速直线运动,它在它在x轴和轴和y轴方向的轴方向的速度分别为速度分别为5和和12,运动开始时位于点运动开始时位于点P(1,2),求点求点M的的轨迹参数方程。轨迹参数方程。解:设动点M(x,y)运动时间为t,依题意,得tytx12251所以,点M的轨迹参数方程为tytx12251参数方程求法参数方程求法:(1)建
12、立直角坐标系)建立直角坐标系,设曲线上任一点设曲线上任一点P坐标为坐标为(x,y)(2)选取适当的参数)选取适当的参数(3)根据已知条件和图形的几何性质)根据已知条件和图形的几何性质,物理意义物理意义,建立点建立点P坐标与参数的函数式坐标与参数的函数式(4)证明这个参数方程就是所由于的曲线的方程)证明这个参数方程就是所由于的曲线的方程小结:小结:一般地,在平面直角坐标系中,一般地,在平面直角坐标系中,如果曲线上任意一点的坐标如果曲线上任意一点的坐标x,y都是某个变数都是某个变数t的函数的函数 (),().xf tyg t(2)并且对于并且对于t的每一个允许值,由方程组(的每一个允许值,由方程组
13、(2)所确定的点)所确定的点M(x,y)都在这条曲线上,都在这条曲线上,那么方程(那么方程(2)就叫做这条曲线的)就叫做这条曲线的参数方程参数方程,系变数系变数x,y的变数的变数t叫做参变数,简称参数。叫做参变数,简称参数。2.2.圆的参数方程圆的参数方程yxorM(x,y)0M(,)tMM x yt如果在时刻,点转过的角度是,坐标是,那么,OMr设,那么由三角函数的定义有:cos,sinxyttrrcos()sinxrttyrt即为参数Or这就是圆心在原点,半径为 的圆的参数方程。()t其中参数 有明确的物理意义质点作匀速圆周运动的时刻yxorM(x,y)0Mt考虑到,也可以取 为参数,co
14、s()sinxryr于有 为参数是Or这也是圆心在原点,半径为 的圆的参数方程其中参数 的几何意义是:00OMOOMOM绕点 逆时针旋转到的位置时,转过的角度。0(,),Px yrP OP如果点 的坐标为圆半径为sincosryrx并且对于并且对于 的每一个允许值的每一个允许值,由方程组由方程组所确定的点所确定的点P(x,y),都在圆都在圆O上上.o思考思考1:圆心为原点,半径为圆心为原点,半径为r 的圆的参数方程?的圆的参数方程?-555-5rp0P(x,y)我们把方程组我们把方程组叫做圆心在原点、半径为叫做圆心在原点、半径为r的圆的的圆的参数方程,参数方程,是参数是参数.,Pxy根据三角函
展开阅读全文