《算法艺术与信息学竞赛》标准课件学习培训模板课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《《算法艺术与信息学竞赛》标准课件学习培训模板课件.ppt》由用户(林田)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 算法艺术与信息学竞赛 算法 艺术 信息学 竞赛 标准 课件 学习 培训 模板
- 资源描述:
-
1、算法艺术与信息学竞赛标准课件目录一、最长公共子序列O(mn)二、最优排序二叉树O(n3)三、最长上升子序列O(nlogn)四、最优三角剖分O(n3)五、最大m子段和O(mn)六、0-1背包问题O(minnc,2n,n1.44n)一、最长公共子序列 Longest Common Subsequence(LCS)分析 考虑前缀x1.i和y1.j,定义ci,j=|LCS(x1.i,y1.j)|则cm,n=|LCS(x,y)|.递推公式为 很直观.考虑xi=yj的情形:关键点一:最优子结构 为了使用动态规划,问题需具备最优子结构最优子结构(Optimal Substructure)直接书写的程序递归树
2、分析关键点二:重叠子问题 为了让动态规划确实发挥功效,问题应该包含尽量多的重叠子问题重叠子问题(overlapping subproblems)解决方法:记忆化 注意memoization不是memorization自底向上递推空间优化 如果只需要最优值,可以用滚动数组实现 按照i递增的顺序计算,di,j只和di-1,j和di,j-1以及di-1,j-1有关系,因此只需要保只需要保留相邻两行留相邻两行,空间复杂度为O(minm,n)更进一步的,可以只保留一行,每次用单独的变量x保留di-1,j,则递推方程为If(i=j)dj=x;else x=dj;dj=maxdj-1,dj;变形.回文词 给
3、一个字符串a,保持原字符的顺序不变,至少要加几个字符才能变成回文词?例:abfcbfa afbcfcbfa分析 红、绿色表示原字符,白色为新增字符 显然,s和s在任何一个位置不可能都是白色(不需要加那个字符!)应该让红色字符尽量多!相当于求相当于求s和逆序串和逆序串s的的LCS,让LCS中的对应字符(红色)对齐,中间的每个绿色字符都增加一个字符和它相等二、最优排序二叉树 给n个关键码和它们的频率,构造让期望比较次数最小的排序二叉树分析 定理:定理:最优排序二叉树的子树也是最优排序二叉树 给出关键码-频率对照表(升序排列)问题:把哪个关键码做为根?则左右子树可以递归往下做ABCDE23 1081
4、2 30FGHIJKLMNOP.514 18 202411722 22 10.分析 用递归来思考,但用递推来做 先考虑两个结点的情形分析 可以用矩阵来保存结果 Cj,k表示从j到k的关键码组成的最优排序二叉树 Rootj,k记录这棵排序二叉树的根分析 考虑三个结点的情形 最优值放在CB,D中,根放在rootB,D中分析 类似地,更新所有Cj-2,j和rootj-2,j分析 四个结点的情形(如A-D)分析 最终计算结果为分析 可以利用root矩阵递归地构造出最优树分析 时间复杂度:计算每个Ci,j和rooti,j需要枚举根结点,故为O(n3)空间复杂度:需要两个n*n矩阵,O(n2)三、最长上升
5、子序列 最长上升子序列问题(最长上升子序列问题(LIS)给一个序列,求它的一个递增子序列,使它的元素个数尽量多。例如序列1,6,2,5,4,7的最长上升子序列是1,2,5,7(还有其他的,这里略去)分析 定义di是从第1个元素到第i个元素为止的最长子序列长度,则状态转移方程为 直接使用这个方程得到的是O(n2)算法 下面把它优化到O(nlogn)状态的组织 d值相同的a值只需要保留最小的只需要保留最小的,因此用数组gi表示d值为i的数的a最小值,显然g1=g2=ai,需要更新gj=ai代码 使用STL的lower_bound可以直接求出比ai大的第一个数,用二分查找实现,每次转移时间O(log
6、n),总时间O(nlogn)fill(g,g+n,infinity);for(inti=0;in;i+)intj=lower_bound(g,g+n,ai)-g;di=j+1;gj=ai;变形1:航线问题 有两行点,每行n个.第一行点和第二行点是一一对应的,有线连接,如下图所示 选择尽量多的线,两两不交叉分析 设与第1行第i个点对应的是第2行第fi个点 假设ij,两条线(i,fi)和(j,fj)的充要条件是fifj,因此问题变成了求求f的最长上升子序列的最长上升子序列 时间复杂度为O(nlogn)变形2:两排列的LCS 给1n的两个排列p1,p2 求p1和p2的最长公共子序列 例:1 5 3
展开阅读全文