书签 分享 收藏 举报 版权申诉 / 19
上传文档赚钱

类型河北省衡水中学2018年高考押题(二)理科数学(解析版).doc

  • 上传人(卖家):Ronald
  • 文档编号:413327
  • 上传时间:2020-03-30
  • 格式:DOC
  • 页数:19
  • 大小:5.32MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《河北省衡水中学2018年高考押题(二)理科数学(解析版).doc》由用户(Ronald)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    河北省 衡水 中学 2018 年高 押题 理科 数学 解析 下载 _处室资料_高中
    资源描述:

    1、 河北衡水中学河北衡水中学 20182018 年高考押题试卷年高考押题试卷 理数试卷(二)理数试卷(二) 第第卷卷 一、选择题:本大题共一、选择题:本大题共 1212 个小题,每小题个小题,每小题 5 5 分,共分,共 6060 分分. .在每小题给出的四个选项中,只有在每小题给出的四个选项中,只有 一项是符合题目要求的一项是符合题目要求的. . 1. 设集合, ,则( ) A. B. C. D. 【答案】B 【解析】由题意可得: ,则集合=. 本题选择 B 选项. 2. 设复数 满足,则( ) A. B. C. D. 【答案】C 【解析】由题意可得: . 3. 若, ,则的值为( ) A.

    2、B. C. D. 【答案】A 【解析】,( , ) , 又因为, 故 sin=sin()- =sin()cos -cos()sin = , 故选 A. 点睛:三角函数式的化简要遵循“三看”原则:一看角,这是重要一环,通过看角之间的差别与联系,把角 进行合理的拆分,从而正确使用公式 ;二看函数名称,看函数名称之间的差异,从而确定使用的公式,常 见的有切化弦;三看结构特征,分析结构特征,可以帮助我们找到变形的方向,如遇到分式要通分等. 4. 已知直角坐标原点 为椭圆 :的中心,为左、右焦点,在区间任取一个 数 ,则事件“以 为离心率的椭圆 与圆 :没有交点”的概率为( ) A. B. C. D.

    3、【答案】A 【解析】满足题意时,椭圆上的点 到圆心 的距离: , 整理可得 , 据此有: , 题中事件的概率 . 本题选择 A选项. 5. 定义平面上两条相交直线的夹角为:两条相交直线交成的不超过的正角.已知双曲线 : ,当其离心率时,对应双曲线的渐近线的夹角的取值范围为( ) A. B. C. D. 【答案】D 【解析】由题意可得: , 设双曲线的渐近线与 轴的夹角为 , 双曲线的渐近线为 ,则 , 结合题意相交直线夹角的定义可得双曲线的渐近线的夹角的取值范围为. 本题选择 D 选项. 6. 某几何体的三视图如图所示,若该几何体的体积为,则它的表面积是( ) A. B. C. D. 【答案】

    4、A 【解析】由三视图可知,该几何体是由四分之三圆锥和一个三棱锥组成的组合体,其中: 由题意: ,据此可知: , , , 它的表面积是 . 本题选择 A选项. 点睛:点睛:三视图的长度特征:“长对正、宽相等,高平齐”,即正视图和侧视图一样高、正视图和 俯视图一样长,侧视图和俯视图一样宽若相邻两物体的表面相交,表面的交线是它们的分界 线,在三视图中,要注意实、虚线的画法正方体与球各自的三视图相同,但圆锥的不同 7. 函数在区间 的图象大致为( ) A. B. C. D. 【答案】A 【解析】分析:判断的奇偶性,在上的单调性,计算的值,结合选项即可得出答案. 详解:设, 当 时, 当时,即函数在上为

    5、单调递增函数,排除 B; 由当时,排除 D; 因为, 所以函数为非奇非偶函数,排除 C,故选 A. 点睛:本题主要考查了函数图象的识别,其中解答中涉及到函数的单调性、函数的奇偶性和函数值的应用, 试题有一定综合性,属于中档试题,着重考查了分析问题和解答问题的能力. 8. 二项式的展开式中只有第 项的二项式系数最大, 且展开式中的第 项的系数是第 项 的系数的 倍,则的值为( ) A. B. C. D. 【答案】B 【解析】二项式的展开式中只有第 6 项的二项式系数最大,则 , 二项式 展开式的通项公式为: , 由题意有: ,整理可得: . 本题选择 D 选项. 点睛:点睛:二项式系数与展开式项

    6、的系数的异同 一是在 Tr1anrbr中, 是该项的二项式系数,与该项的(字母)系数是两个不同的概念, 前者只指,而后者是字母外的部分,前者只与 n 和 r 有关,恒为正,后者还与 a,b 有关, 可正可负 二是二项式系数的最值与增减性与指数 n的奇偶性有关,当 n为偶数,中间一项的二项式系数 最大;当 n 为奇数时,中间两项的二项式系数相等,且同时取得最大值 9. 执行如图的程序框图,若输入的,则输出的 的值为( ) A. B. C. D. 【答案】C 【解析】依据流程图运行程序,首先 初始化数值, x=0,y=1,n=1 ,进入循环体: x=ny=1,y= =1,时满足条件 y2x ,执行

    7、 n=n+1=2 ,进入第二次循环, x=ny=2,y= = ,时不满足条件 y2x ,输出 . 10. 已知数列,且, ,则的值为( ) A. B. C. D. 【答案】C 【解析】由递推公式可得: 当 为奇数时, ,数列 是首项为 1,公差为 4的等差数列, 当 为偶数时, ,数列 是首项为 2,公差为 0的等差数列, 本题选择 C 选项. 点睛:点睛:数列的递推关系是给出数列的一种方法,根据给出的初始值和递推关系可以依次写出这 个数列的各项,由递推关系求数列的通项公式,常用的方法有:求出数列的前几项,再归纳 猜想出数列的一个通项公式;将已知递推关系式整理、变形,变成等差、等比数列,或用累

    8、 加法、累乘法、迭代法求通项 11. 已知函数 的图象如图所示, 令 , 则下列关于函数 的说法中不正确的是( ) A. 函数图象的对称轴方程为 B. 函数的最大值为 C. 函数的图象上存在点 ,使得在 点处的切线与直线 :平行 D. 方程的两个不同的解分别为,则最小值为 【答案】C 【解析】由函数的最值可得 ,函数的周期 , 当 时, , 令 可得 ,函数的解析式 .则: . 结合函数的解析式有 ,而 , 选项 C 错误,依据三角函数的性质考查其余选项正确. 本题选择 C 选项. 12. 已知函数,若存在三个零点,则 的取值范围是( ) A. B. C. D. 【答案】D 【解析】很明显 ,

    9、由题意可得: , 则由 可得 , 由题意得不等式: , 即: , 综上可得 的取值范围是 . 本题选择 D选项. 点睛:点睛:函数零点的求解与判断 (1)直接求零点:令 f(x)0,如果能求出解,则有几个解就有几个零点 (2)零点存在性定理:利用定理不仅要函数在区间a,b上是连续不断的曲线,且 f(a) f(b)0, 还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点 (3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐 标有几个不同的值,就有几个不同的零点 第第卷卷 二、填空题:本大题共二、填空题:本大题共 4 4 小题,每小题小题,每小题

    10、 5 5 分,共分,共 2020 分分. . 13. 向量,若向量 , 共线,且 ,则的值为_ 【答案】-8 【解析】由题意可得: 或 , 则: 或 . 14. 设点是椭圆 上的点,以点为圆心的圆与 轴相切于椭圆的焦点 ,圆与 轴相交 于不同的两点 、 ,若为锐角三角形,则椭圆的离心率的取值范围为_ 【答案】 【解析】分析:设,由题意,从而可求椭圆的离心率的取值范围. 详解:因为圆与 轴相切于焦点 , 所以圆心与 的连线必垂直于 轴,不妨设, 因为在椭圆上,则,所以圆的半径为, 由题意,所以,所以. 点睛:本题考查了椭圆的几何性质离心率的求解,其中根据条件转化为圆锥曲线的离心率的方程是解 答的

    11、关键求双曲线的离心率(或离心率的取值范围),常见有两种方法:求出 ,代入公式;只 需要根据一个条件得到关于的齐次式, 转化为的齐次式, 然后转化为关于 的方程(不等式), 解方程(不 等式),即可得 ( 的取值范围) 15. 设 , 满足约束条件,则 的取值范围为_ 【答案】 【解析】绘制不等式组表示的可行域如图所示,目标函数 表示可行域内的点 与坐标原点 之间连线的斜率,目标函数在点 处取得最大值 ,在点 处取得最小值 , 则 的取值范围为. 点睛:点睛:本题是线性规划的综合应用,考查的是非线性目标函数的最值的求法解决这类问题的 关键是利用数形结合的思想方法,给目标函数赋于一定的几何意义 1

    12、6. 在平面五边形中,已知, ,当五边 形的面积时,则的取值范围为_ 【答案】 【解析】由题意可设: ,则: , 则:当 时,面积由最大值 ; 当 时,面积由最大值 ; 结合二次函数的性质可得:的取值范围为. 三、解答题:解答应写出文字说明、证明过程或演算步骤三、解答题:解答应写出文字说明、证明过程或演算步骤. . 17. 已知数列的前 项和为, . (1)求数列的通项公式; (2)记,求的前 项和. 【答案】(1) ;(2) . 【解析】试题分析: (1)首先利用 Sn与 an的关系:当 n=1时,a1=S1,当 n2时,an=Sn-Sn-1;结合已知条件 等式推出数列an是等比数列,由此求

    13、得数列an的通项公式; (2),利用裂项求和即可. 试题解析: (1) 当时, 由及, 得, 即, 解得 又由, 可知, -得,即且时, 适合上式, 因此数列是以 为首项,公比为 的等比数列,故 (2)由(1)及 ,可知, 所以, 故 18. 如图所示的几何体中,底面为菱形,与 相交于 点,四 边形为直角梯形,平面底面. (1)证明:平面平面; (2)求二面角的余弦值. 【答案】(1)见解析; (2)余弦值为. 【解析】试题分析: (1)利用题意证得平面.由面面垂直的判断定理可得平面平面 . (2)结合(1)的结论和题意建立空间直角坐标系, 由平面的法向量可得二面角的余弦值为 . 试题解析:

    14、(1)因为底面为菱形,所以, 又平面底面,平面平面, 因此平面,从而. 又,所以平面, 由, 可知, , 从而,故. 又,所以平面. 又平面,所以平面平面. (2) 取中点 , 由题可知, 所以平面, 又在菱形中, 所以分别以, ,的方向为 , , 轴正方向建立空间直角坐标系(如图示) , 则, 所以 , , . 由(1)可知平面,所以平面的法向量可取为. 设平面的法向量为, 则即即令,得, 所以. 从而 . 故所求的二面角的余弦值为. 点睛:点睛: 作二面角的平面角可以通过垂线法进行, 在一个半平面内找一点作另一个半平面的垂线, 再过垂足作二面角的棱的垂线,两条垂线确定的平面和二面角的棱垂直

    15、,由此可得二面角的平 面角 用向量法解决立体几何问题,是空间向量的一个具体应用,体现了向量的工具性,这种方法可 把复杂的推理证明、辅助线的作法转化为空间向量的运算,降低了空间想象演绎推理的难度, 体现了由“形”转“数”的转化思想 两种思路:(1)选好基底,用向量表示出几何量,利用空间向量有关定理与向量的线性运算进 行判断(2)建立空间坐标系,进行向量的坐标运算,根据运算结果的几何意义解释相关问题 19. 某校为缓解高三学生的高考压力,经常举行一些心理素质综合能力训练活动,经过一段时间的训练后从 该年级名学生中随机抽取名学生进行测试,并将其成绩分为 、 、 、 、 五个等级,统计数据如 图所示(

    16、视频率为概率) ,根据以上抽样调查数据,回答下列问题: (1)试估算该校高三年级学生获得成绩为 的人数; (2)若等级 、 、 、 、 分别对应分、分、分、分、分,学校要求平均分达分以上为 “考前心理稳定整体过关”,请问该校高三年级目前学生的“考前心理稳定整体”是否过关? (3)为了解心理健康状态稳定学生的特点,现从 、 两种级别中,用分层抽样的方法抽取个学生样本, 再从中任意选取 个学生样本分析,求这 个样本为 级的个数 的分布列与数学期望. 【答案】(1) 等级为 的概率为,成绩为 的人数约有;(2)见解析; (3)见解析. 【解析】试题分析: (1)由频率分布直方图估算该校高三年级学生获

    17、得成绩为 的人数为 448; (2)计算平均分可得该校高三年级目前学生的“考前心理稳定整体”已过关. (3) 的可能值为 0,1,2,3.由超几何分布的概率写出分布列,求得数学期望为 . 试题解析: (1)从条形图中可知这 100 人中,有 56 名学生成绩等级为 , 所以可以估计该校学生获得成绩等级为 的概率为, 则该校高三年级学生获得成绩为 的人数约有. (2)这 100 名学生成绩的平均分为 , 因为,所以该校高三年级目前学生的“考前心理稳定整体”已过关. (3)由题可知用分层抽样的方法抽取 11 个学生样本,其中 级 4 个, 级 7 个,从而任意选取 3 个,这 3 个为 级的个数

    18、的可能值为 0,1,2,3. 则, ,. 因此可得 的分布列为: 则 . 20. 已知椭圆 :的离心率为,且过点,动直线 : 交椭圆 于不同的 两点 , ,且( 为坐标原点). (1)求椭圆 的方程. (2)讨论是否为定值?若为定值,求出该定值,若不是请说明理由. 【答案】 (1)椭圆方程为; (2)见解析. 【解析】试题分析: (1)由题意求得,故所求的椭圆方程为. (2)联立直线与椭圆的方程,利用根与系数的关系结合题意可证得为定值. 试题解析: (1)由题意可知,所以,即, 又点在椭圆上,所以有, 由联立,解得, 故所求的椭圆方程为. (2)设,由, 可知. 联立方程组 消去 化简整理得,

    19、 由,得,所以, 又由题知, 即, 整理为. 将代入上式,得. 化简整理得,从而得到. 21. 设函数. (1)试讨论函数的单调性; (2)设,记,当时,若方程有两个不相等的实根, ,证明. 【答案】 (1)见解析; (2)见解析. 【解析】试题分析: (1)求解函数的导函数,分类讨论可得: 若时,当时,函数单调递减,当时,函数单调递增; 若时,函数单调递增; 若时,当时,函数单调递减,当时,函数单调递增. (2)构造新函数 ,结合新函数的性质即可证得题中的不等 式. 试题解析: (1)由,可知 . 因为函数的定义域为,所以, 若时,当时,函数单调递减,当时,函数单调递增; 若时,当在内恒成立

    20、,函数单调递增; 若时,当时,函数单调递减,当时,函数单调递增. (2)证明:由题可知 , 所以 . 所以当时,;当时,;当时,. 欲证,只需证,又,即单调递增,故只需证明. 设,是方程的两个不相等的实根,不妨设为, 则 两式相减并整理得 , 从而, 故只需证明, 即. 因为, 所以(*)式可化为, 即. 因为,所以, 不妨令,所以得到,. 记, 所以,当且仅当时, 等号成立,因此在 单调递增. 又, 因此, 故,得证, 从而得证. 22. 在直角坐标系中,曲线:( 为参数,) ,在以坐标原点为极点, 轴的非负半 轴为极轴的极坐标系中,曲线:. (1)试将曲线与化为直角坐标系中的普通方程,并指

    21、出两曲线有公共点时 的取值范围; (2)当时,两曲线相交于 , 两点,求. 【答案】(1) 的取值范围为;(2) . 【解析】试题分析: (1)由题意计算可得曲线与化为直角坐标系中的普通方程为, ; 的取值范围是; (2)首先求解圆心到直线的距离,然后利用圆的弦长计算公式可得. 试题解析: (1)曲线:消去参数 可得普通方程为. 曲线:,两边同乘 .可得普通方程为. 把代入曲线的普通方程得:, 而对有,即,所以故当两曲线有公共点时, 的取值范围为. (2)当时,曲线:, 两曲线交点 , 所在直线方程为. 曲线的圆心到直线的距离为, 所以. 23. 已知函数. (1)在下面给出的直角坐标系中作出函数的图象,并由图象找出满足不等式的解集; (2)若函数的最小值记为,设,且有,试证明:. 【答案】(1) 解集为;(2)见解析. 【解析】试题分析: (1)将函数写成分段函数的形式解不等式可得解集为. (2)整理题中所给的算式,构造出适合均值不等式的形式,然后利用均值不等式的结论证明题 中的不等式即可,注意等号成立的条件. 试题解析: (1)因为 所以作出图象如图所示,并从图可知满足不等式的解集为. (2)证明:由图可知函数的最小值为 ,即. 所以,从而, 从而 . 当且仅当时,等号成立, 即,时,有最小值, 所以得证.

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:河北省衡水中学2018年高考押题(二)理科数学(解析版).doc
    链接地址:https://www.163wenku.com/p-413327.html
    Ronald
         内容提供者      个人认证 实名认证

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库