核心素养导向的数学教学变课件.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《核心素养导向的数学教学变课件.pptx》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 核心 素养 导向 数学 教学 课件
- 资源描述:
-
1、核心素养核心素养导向导向的的数学教学变革数学教学变革 一一、如何理解数学学科核心素养、如何理解数学学科核心素养“教育的根本任务在于立德树人教育的根本任务在于立德树人”,这,这就是整个教育改革的核心任务。就是整个教育改革的核心任务。如何如何落实落实“立德树人立德树人”的根本任务?抓的根本任务?抓手在哪里?手在哪里?教育部的顶层设计是教育部的顶层设计是“以学生发展核心以学生发展核心素养为统领素养为统领”,各学科教学都要为学生,各学科教学都要为学生核心素养的发展作出独特的贡献,从而核心素养的发展作出独特的贡献,从而实现实现“立德树人立德树人”根本任务。根本任务。数学数学教育中教育中的的“立德树人立德
2、树人”,以数学学科核心素养为,以数学学科核心素养为统领。统领。数学学科核心素养数学学科核心素养是通过是通过数学数学学习学习而逐步形成而逐步形成的的具有具有数学特征的数学特征的关键关键能力、必备品格与价值观念。能力、必备品格与价值观念。表现:表现:会会用数学眼光观察用数学眼光观察世界;会世界;会用数学思维思考用数学思维思考世界世界;会;会用数学语言表达用数学语言表达世界。世界。高中高中课课标提炼标提炼了六个数学学科核心了六个数学学科核心素养素养要素要素:数学抽数学抽象、逻辑推理、数学建模、数学运算、直观想象、数象、逻辑推理、数学建模、数学运算、直观想象、数据分析据分析。理解数学学科核心素养的几个
3、角理解数学学科核心素养的几个角度度 数学教育中数学教育中“立德树人立德树人”的内涵;的内涵;从与学生发展核心素养关系的角度;从与学生发展核心素养关系的角度;从从数学学科特点出发;数学学科特点出发;数学课程目标的发展角度。数学课程目标的发展角度。数学学科核心素养数学学科核心素养“是什么是什么”?深化?深化数学教育改革中提出核心素养导向有什么数学教育改革中提出核心素养导向有什么历史的必然性?能否历史的必然性?能否“举例子举例子”?数学教育数学教育“立德树人立德树人”的基本内的基本内涵涵 帮助帮助学生掌握现代生活和进一步学习所必学生掌握现代生活和进一步学习所必需的数学知识、技能、思想和方法需的数学知
4、识、技能、思想和方法;提升提升学生的数学素养,引导学生会用数学学生的数学素养,引导学生会用数学眼光观察世界,会用数学思维思考世界,眼光观察世界,会用数学思维思考世界,会用数学语言表达世界会用数学语言表达世界;促进促进学生思维能力、实践能力和创新意识学生思维能力、实践能力和创新意识的发展的发展;在在学生形成正确人生观、价值观、世界观学生形成正确人生观、价值观、世界观等方面发挥独特作用。等方面发挥独特作用。数学学科核心素养与学生发展核心素养数学学科核心素养与学生发展核心素养 中国学生发展核心素养:中国学生发展核心素养:文化基础(人文文化基础(人文底蕴、科学精神)、自主发展(学会学习底蕴、科学精神)
5、、自主发展(学会学习、健康生活)、社会参与(责任担当、实、健康生活)、社会参与(责任担当、实践创新)践创新)数学教育对发展学生核心素养的独特贡献数学教育对发展学生核心素养的独特贡献,主要体现在科学,主要体现在科学精神精神(理性思维、批判理性思维、批判质疑、勇于探究质疑、勇于探究)、学会学会学习学习(乐学善学乐学善学、勤于、勤于反思反思、信息意识、信息意识)和和实践实践创新创新(劳劳动意识、问题解决、技术应用动意识、问题解决、技术应用)上。上。数学学科核心素养与数学的特数学学科核心素养与数学的特点点数学特点数学特点抽象性抽象性严谨性严谨性应用性应用性核心素养核心素养数学抽象数学抽象逻辑推理逻辑推
6、理数学建模数学建模核心素养核心素养数学运算数学运算直观想象直观想象数据分析数据分析具体内容具体内容代数代数几何几何统计概率统计概率数学课程目标的发展数学课程目标的发展 是是“三维目标三维目标”的进一步融合;的进一步融合;是是义教义教的八的八个个“核心概念核心概念”(数数感、符号感、符号意识、空间观念、几何直观、数据分析观意识、空间观念、几何直观、数据分析观念、运算能力、推理能力、模型念、运算能力、推理能力、模型思想思想)的的进一步整合进一步整合;以以“四基四基”“”“四能四能”为载体;为载体;双基、三大能力是数学育人目标的内核双基、三大能力是数学育人目标的内核与时俱进丰富内涵,万变不离其宗!与
7、时俱进丰富内涵,万变不离其宗!新一轮数学课改的新一轮数学课改的核心核心任务任务是提升学生是提升学生的数学学科核心素养,的数学学科核心素养,为学生发展核心为学生发展核心素养作出独特贡献。素养作出独特贡献。要有具体措施要有具体措施,要要把数学学科核心素养把数学学科核心素养落实在落实在数学教育的数学教育的各个环节各个环节。二、新教材的体系二、新教材的体系 普通高中教科书普通高中教科书数学(数学(A A版)版)结构体系结构体系三三、关于落实关于落实核心素养的思考核心素养的思考1理性思维是理性思维是数学素养数学素养的的灵魂灵魂 发展发展学生的理性思维(特别是逻辑思维)学生的理性思维(特别是逻辑思维),使
8、学生学会有逻辑,使学生学会有逻辑地地、创造性地、创造性地思考思考,学会使用数学学会使用数学语言语言表达与交流表达与交流,成为善于成为善于认识和解决问题的人才,是数学课程的主认识和解决问题的人才,是数学课程的主要任务要任务。例例1 1 如何研究如何研究“相交线相交线”研究对象是什么?研究对象是什么?两条直线相交所形成的几何图形两条直线相交所形成的几何图形 研究内容是什么?研究内容是什么?两两条直线相交形成四个角,这些角之间条直线相交形成四个角,这些角之间的相互关系的相互关系 如何发现这些角的相互关系?如何发现这些角的相互关系?探究过程探究过程 四个角的关系四个角的关系 1+2+3+4=360 三
9、个角的关系三个角的关系 变化中不存在不变性变化中不存在不变性没有固定的关系没有固定的关系 两个角的关系两个角的关系(1)两两两两配对配对有有6对角,即对角,即1和和2,1和和3,1和和4,2和和3,2和和4,3和和4。(2)1和和2的关系如何研究?的关系如何研究?从角的定义出发:两个角的顶点的关系、从角的定义出发:两个角的顶点的关系、边的关系,得到边的关系,得到1与与2的位置的位置特点特点。顶点重合;一边重合,称这两个角顶点重合;一边重合,称这两个角“相邻相邻”;另一边互为反向延长线,所以两个角;另一边互为反向延长线,所以两个角“互补互补”。用用几何语言准确几何语言准确表达表达即为即为邻邻补角
10、的定义:补角的定义:1与与2有一条公共边有一条公共边OA,它们的另一边,它们的另一边互为反向延长线,即互为反向延长线,即1与与2互补,具有互补,具有这种关系的两个角,互为邻补角这种关系的两个角,互为邻补角(3)其余)其余5对角的关系的研究对角的关系的研究 让让学生类比学生类比1与与2的位置关系的研究的位置关系的研究过程,过程,对对其余其余5对角的边的位置关系对角的边的位置关系进行进行自主探究自主探究,并作出分类并作出分类,得出,得出对顶角的对顶角的定义,再得出:两条直线相交所形成的定义,再得出:两条直线相交所形成的4个角中,两两之间的位置关系,根据两个角中,两两之间的位置关系,根据两个角的边之
11、间特殊的位置关系,分成两个角的边之间特殊的位置关系,分成两类,一类是邻补角,一类是对顶角。类,一类是邻补角,一类是对顶角。接下去研究什么?接下去研究什么?已经已经研究研究了两条直线相交形成的了两条直线相交形成的6 6对角的对角的位置关系,发现可以分为两类。那么,位置关系,发现可以分为两类。那么,邻补角、对顶角分别有怎样的数量关系邻补角、对顶角分别有怎样的数量关系呢?这呢?这就是接下来就是接下来要研究的问题要研究的问题。定性到定量定性到定量研究几何问题的基本之研究几何问题的基本之道。道。如何让学生感受证明如何让学生感受证明“对顶角相对顶角相等等”的必要性的必要性 从一个给定的图形中得到从一个给定
12、的图形中得到“对顶角相等对顶角相等”,但任,但任意两个对顶角都相等吗意两个对顶角都相等吗?观察剪刀观察剪刀剪纸的过程,这个过程中什么在变化?剪纸的过程,这个过程中什么在变化?对顶角的相等关系总能保持吗?为什么?对顶角的相等关系总能保持吗?为什么?在在一个平面内的两条相交线,不仅一个平面内的两条相交线,不仅AB,CD的位的位置关系可以改变,交点置关系可以改变,交点O的位置也可以改变。在的位置也可以改变。在这些变化过程中,对顶角仍然相等吗?你如何使这些变化过程中,对顶角仍然相等吗?你如何使人相信:如果两个角具有对顶角的位置关系,那人相信:如果两个角具有对顶角的位置关系,那么它们就一定相等?你能把道
13、理完整地写出来吗么它们就一定相等?你能把道理完整地写出来吗?思考题思考题 你认为教材为什么把平行线的研究内容你认为教材为什么把平行线的研究内容安排在安排在“三线八角三线八角”之后?之后?在在“三线八角三线八角”的基础上,如何引导学的基础上,如何引导学生发现平行线的判断与性质?生发现平行线的判断与性质?进一步地:如何研究位置进一步地:如何研究位置关系的关系的性质?性质?两两条直线平行,从条直线平行,从“同位角相等同位角相等”、“内错角相等内错角相等”以及以及“同旁内角互补同旁内角互补”可可以想到,这时的以想到,这时的“性质性质”是与是与“第三条第三条直线直线”构成某种关系构成某种关系平行、相交,
14、平行、相交,相交时又形成一些相交时又形成一些角,然后看由两条直角,然后看由两条直线平行这一位置线平行这一位置关系(条件)所关系(条件)所决定的决定的这些角之间有什么确定的关系这些角之间有什么确定的关系。从方法论的高度看从方法论的高度看,研究两个几何,研究两个几何元素的元素的某种位置某种位置关系的关系的性质,就是探索在这种位性质,就是探索在这种位置关系下的两个几何元素置关系下的两个几何元素与与其其他(同类)他(同类)几何元素所形成的图形中出现的确定关系几何元素所形成的图形中出现的确定关系(不变性和不变量)。(不变性和不变量)。具体方法是让具体方法是让“其他几何元素其他几何元素”动起来,动起来,看
15、看“变化中的变化中的不变性、不变量不变性、不变量”这是这是教学设计的源头。教学设计的源头。例例2 直线与平面平行的性质直线与平面平行的性质 位置关系(大前提)位置关系(大前提):直线:直线l 平面平面;探究性质的思路:直线探究性质的思路:直线l、平面、平面与其他直线、平与其他直线、平面所形成的确定关系,可以得到命题:面所形成的确定关系,可以得到命题:(1)如果)如果 al(小前提(小前提),那么,那么a ;(2)如果)如果 a,那么,那么a l;(3)如果)如果a l,那么,那么a;(4)如果)如果a,那么,那么a l;(5)如果)如果l,那么,那么;(6)如果)如果,那么,那么l;(7)如果
16、)如果l,那么,那么;(8)如果)如果 ,那么,那么 l。(9)与)与“公理公理”相联系,直线相联系,直线l与平面与平面 内任内任意一点意一点A确定一个平面确定一个平面,=m,那么,那么 ml;(10)l,所以,所以l=。如果。如果m在在 内,则内,则或者或者ml,或者,或者m与与l是异面直线。是异面直线。(11)直线)直线m与直线与直线l异面,则过直线异面,则过直线m有且只有且只有一个平面与直线有一个平面与直线l平行。平行。(12)l,=l,=l1,=l2,那么那么l1l2。例例3 两两个平面个平面垂直的性质与判定垂直的性质与判定 研究对象是什么?研究对象是什么?研究内容是什么?研究内容是什
17、么?如何引导学生发现性质?如何引导学生发现性质?一般一般地,什么叫地,什么叫“几何图形的性质几何图形的性质”?几何性质分为哪些类型?几何性质分为哪些类型?教材的教材的变化变化2数学育人要数学育人要发挥数学的内在力发挥数学的内在力量量,数学育人要,数学育人要用数学的用数学的方式方式 数学是思维的科学,数学是思维的科学,具有具有“追求最大限度追求最大限度的一般性模式特别是一般性算法的倾向的一般性模式特别是一般性算法的倾向”;有一种研究的有一种研究的“基本套路基本套路”;有有一套具有普适性的思考结构和交流的符一套具有普适性的思考结构和交流的符号形式,这种结构和符号形式是强大的,号形式,这种结构和符号
18、形式是强大的,富有逻辑,简明而且精确,是人们可以借富有逻辑,简明而且精确,是人们可以借助于理解和处理周围环境的一种思维方式助于理解和处理周围环境的一种思维方式。教材如何体现教材如何体现“数学的方式数学的方式”以以发展学生发展学生数学素养为数学素养为追求,根据学生的追求,根据学生的认知规律,螺旋上升地安排认知规律,螺旋上升地安排教教学学内容内容,特,特别是要让重要的(往往也是难以一次完成别是要让重要的(往往也是难以一次完成的)数学概念、思想方法得到反复理解的的)数学概念、思想方法得到反复理解的机会机会。心理性心理性 以以“事实事实概念概念性质(关系)性质(关系)结构(联系)结构(联系)应用应用”
19、为明线为明线;以以“事实事实方法方法方法论方法论数学学数学学科本质观科本质观”为为暗线。暗线。从数学思维从数学思维、思想、思想或核心或核心素养角度素养角度看看“事实事实概念概念”主要是主要是“抽象抽象”(在周而复始的运动过(在周而复始的运动过程中,涉及哪些量,它们之间的关系如何,可以用怎样的程中,涉及哪些量,它们之间的关系如何,可以用怎样的数学方式表示)数学方式表示);“概念概念性质性质”主要是主要是“推理推理”,包括通过归纳推理发,包括通过归纳推理发现性质,通过(逻辑)演绎推理证明性质现性质,通过(逻辑)演绎推理证明性质;“性质性质结构结构”主要也是主要也是“推理推理”,是建立相关知识之,是
20、建立相关知识之间的联系而形成结构功能良好、迁移能力强大的数学认知间的联系而形成结构功能良好、迁移能力强大的数学认知结构的过程结构的过程;“概念、性质、结构概念、性质、结构应用应用”主要是主要是“建模建模”,是,是用用数数学学知识知识解决数学内外的问题。解决数学内外的问题。在在整个整个教学内容教学内容的的展开过程中,都要发挥展开过程中,都要发挥“一一般观念般观念”的作用,加强的作用,加强“如何思考如何思考”、“如何如何发现发现”的启发和引导,特别是在概念的抽象要的启发和引导,特别是在概念的抽象要做做什么什么、“几何性质几何性质”“”“代数性质代数性质”“”“函数性函数性质质”指什么等问题指什么等
21、问题上要及时引导,以使学生明上要及时引导,以使学生明确思考方向确思考方向。“不在不在知知其其然然,而在,而在知其所以然知其所以然;不在;不在知其所知其所以然,以然,而在何而在何由由以知其所以然以知其所以然”;“启发学启发学者者,示以思维之示以思维之道道耳耳”。当前的教学,主要问题是数学没有讲好,老师当前的教学,主要问题是数学没有讲好,老师不知道如何不知道如何“示以思维之道示以思维之道”。我们应当加强。我们应当加强这方面的研究。这方面的研究。例例4 4 三角函数的知识结构图三角函数的知识结构图三角函数概念与基本性质三角函数概念与基本性质单位单位圆上点圆上点的运动的运动规律规律三角三角函 数函 数
22、的 概的 概念念三角三角函数的函数的基本性基本性质质三 角 函三 角 函数 值 的数 值 的符号符号诱 导 公诱 导 公式一式一同 角 三同 角 三角 函 数角 函 数的 基 本的 基 本关系关系三角函数三角函数概 念 和 性概 念 和 性质 的 简 单质 的 简 单应用应用诱导公式诱导公式关于原点的对称性关于原点的对称性旋转旋转/2的对称性的对称性关于关于x轴的对称性轴的对称性圆圆的的对对称称性性关于关于y轴的对称性轴的对称性关于直线关于直线y=x的对称性的对称性公式二公式二公式三公式三公式四公式四公式五公式五公式六公式六3加强推理和运算加强推理和运算 推理推理是数学的是数学的“命根子命根子
23、”(伍鸿熙)(伍鸿熙),运算是数学运算是数学的的“童子功童子功”。陈建功:片段的推理,不但见诸任何学科,也可以陈建功:片段的推理,不但见诸任何学科,也可以从日常有条理的谈话得之。但是,推理之成为说理从日常有条理的谈话得之。但是,推理之成为说理的体系者,限于数学一科的体系者,限于数学一科忽视数学教育论理性忽视数学教育论理性的原则,无异于数学教育的自杀。的原则,无异于数学教育的自杀。数学数学育人的基本途径是对学生进行系统的(逻辑)育人的基本途径是对学生进行系统的(逻辑)思维训练,训练的基本载体是逻辑推理和数学运算思维训练,训练的基本载体是逻辑推理和数学运算。代数运算代数运算“代数学的根源在于代数运
24、算代数学的根源在于代数运算”,有效,有效有系统地运用运算律去解决问题是代数有系统地运用运算律去解决问题是代数学的基本思想;学的基本思想;数及其运算是一切运算系统的模范,与数及其运算是一切运算系统的模范,与它类比而发现需研究的问题和方法,是它类比而发现需研究的问题和方法,是基本而重要的数学思维方式;基本而重要的数学思维方式;代数运算的过程和方法可以容易地发展代数运算的过程和方法可以容易地发展成高层次函数观点。成高层次函数观点。例例5 5 等差数列的研究等差数列的研究 数列的一般概念数列的一般概念等差数列,等比数列;等差数列,等比数列;研究的对象:一般研究的对象:一般有序、有规律(函数有序、有规律
展开阅读全文