公开课课件 《11回归分析的基本思想及其初步应用》课.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《公开课课件 《11回归分析的基本思想及其初步应用》课.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 11回归分析的基本思想及其初步应用 公开课课件 11回归分析的基本思想及其初步应用课 公开 课件 11 回归 分析 基本 思想 及其 初步 应用
- 资源描述:
-
1、2022-11-13郑平正 制作1.1回归分析的基回归分析的基本思想及其初步本思想及其初步应用应用高二数学高二数学 选修选修1-2 比数学3中“回归”增加的内容数学数学统计统计1.画散点图画散点图2.了解最小二乘法了解最小二乘法的思想的思想3.求回归直线方程求回归直线方程ybxa4.用回归直线方程用回归直线方程解决应用问题解决应用问题选修-统计案例5.引入线性回归模型引入线性回归模型ybxae6.了解模型中随机误差项了解模型中随机误差项e产产生的原因生的原因7.了解相关指数了解相关指数 R2 和模型拟和模型拟合的效果之间的关系合的效果之间的关系8.了解残差图的作用了解残差图的作用9.利用线性回
2、归模型解决一类利用线性回归模型解决一类非线性回归问题非线性回归问题10.正确理解分析方法与结果正确理解分析方法与结果问题问题1 1:正方形的面积正方形的面积y y与正方形的边长与正方形的边长x x之间之间 的的函数关系函数关系是是y=xy=x2 2确定性关系确定性关系问题问题2 2:某水田水稻产量某水田水稻产量y y与施肥量与施肥量x x之间是否之间是否 -有一个确定性的关系?有一个确定性的关系?例如:例如:在在 7 7 块并排、形状大小相同的试验田块并排、形状大小相同的试验田上上 进行施肥量对水稻产量影响的试验,得到进行施肥量对水稻产量影响的试验,得到如下所示的一组数据:如下所示的一组数据:
3、施施化肥量化肥量x x 15 20 25 30 35 40 45 15 20 25 30 35 40 45水稻产量水稻产量y y 330 345 365 405 445 450 455 330 345 365 405 445 450 455复习、变量之间的两种关系复习、变量之间的两种关系自变量取值一定时,因变量的取值带有一定随自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做机性的两个变量之间的关系叫做相关关系相关关系。1 1、定义:、定义:1 1):相关关系是一种不确定性关系;):相关关系是一种不确定性关系;注注对具有相关关系的两个变量进行对具有相关关系的两个变量进行统计分
4、析的方法叫统计分析的方法叫回归分析回归分析。2 2):):2 2、现实生活中存在着大量的相关关系。现实生活中存在着大量的相关关系。回归分析的内容与步骤:回归分析的内容与步骤:统计检验通过后,最后是统计检验通过后,最后是利用回归模型,根据自变量去估计、利用回归模型,根据自变量去估计、预测因变量预测因变量。回归分析通过一个变量或一些变量的变化解释回归分析通过一个变量或一些变量的变化解释另一变量的变化。另一变量的变化。其主要内容和步骤是:其主要内容和步骤是:首先根据理论和对问题的分析判断,首先根据理论和对问题的分析判断,将变量分为自变量和因变将变量分为自变量和因变量量;其次,设法其次,设法找出合适的
5、数学方程式(即回归模型)找出合适的数学方程式(即回归模型)描述变量间描述变量间的关系;的关系;由于涉及到的变量具有不确定性,接着还要由于涉及到的变量具有不确定性,接着还要对回归模型进行对回归模型进行统计检验统计检验;最小二乘法:最小二乘法:y=bx+a(x,y)(x,y)称为样本点的中心称为样本点的中心。n n(x x-x x)(y y-y y)i ii ii i=1 1b b=n n2 2(x x-x x)i ii i=1 1a a=y y-b bx x.n nn n1 11 1其其 中中 x x=x x,y y=y y.i ii in nn ni i=1 1i i=1 1n niiiii=
6、1i=1n n2 22 2i ii=1i=1x y-nxyx y-nxy=,=,x-nxx-nx3 3、对、对两个两个变量进行的线性分析叫做变量进行的线性分析叫做线性线性回归分析回归分析。2 2、回归直线方程:、回归直线方程:n nn ni ii ii ii ii i=1 1i i=1 1n nn n2 22 22 2i ii ii i=1 1i i=1 1(x x-x x)(y y-y y)x x-n nx xy yb b=,(x x-x x)x x-n nx xa a=y y-b bx xy y2.2.相应的直线叫做相应的直线叫做回归直线回归直线。1 1、所求直线方程、所求直线方程 叫做叫
7、做回归直回归直 -线方程线方程;其中;其中 y=bx+ay=bx+a相关系数相关系数v 1.1.计算公式计算公式v2 2相关系数的性质相关系数的性质v(1)|r|1(1)|r|1v(2)|r|(2)|r|越接近于越接近于1 1,相关程度越大;,相关程度越大;|r|r|越接越接近于近于0 0,相关程度越小,相关程度越小v问题:达到怎样程度,问题:达到怎样程度,x x、y y线性相关呢?它线性相关呢?它们的相关程度怎样呢?们的相关程度怎样呢?n ni ii ii i=1 1n nn n2 22 2i ii ii i=1 1i i=1 1(x x-x x)(y y-y y)r r=(x x-x x)
8、(y y-y y)负相关负相关正相关正相关n n(x-x)(y-y)(x-x)(y-y)iiiii=1i=1r=r=nnnn2222(x-x)(y-y)(x-x)(y-y)iiiii=1i=1i=1i=1相关系数相关系数正相关;负相关通常,正相关;负相关通常,r r-1,-0.75-0.75-负相关很强负相关很强;r0.75,1正相关很强正相关很强;r-0.75,-0.3-负相关一般负相关一般;r0.3,0.75正相关一般正相关一般;r r-0.25,0.25-0.25-相关性较弱相关性较弱;例例1 从某大学中随机选取从某大学中随机选取8名女大学生,其身高和体重数据如表名女大学生,其身高和体重
9、数据如表1-1所示。所示。编号12345678身高/cm165 165 157 170 175 165 155 170体重/kg4857505464614359求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm的女大学生的体重。的女大学生的体重。案例案例1:女大学生的身高与体重:女大学生的身高与体重解:解:1、选取身高为自变量、选取身高为自变量x,体重为因变量,体重为因变量y,作散点图:,作散点图:2、由散点图知道身高和体重有比较、由散点图知道身高和体重有比较好的线性相关关系,因此可以用线性好的线性相关关系
10、,因此可以用线性回归方程刻画它们之间的关系。回归方程刻画它们之间的关系。172.85849.0 xy分析:由于问题中分析:由于问题中要求根据身高预报要求根据身高预报体重,因此选取身体重,因此选取身高为自变量,体重高为自变量,体重为因变量为因变量学学身身高高172cm女172cm女大大生生体体重重y=0.849y=0.849172-85.712=60.316(kg)172-85.712=60.316(kg)2.2.回归方程:回归方程:1.散点图;散点图;例例1 从某大学中随机选取从某大学中随机选取8名女大学生,其身高和体重数据如表名女大学生,其身高和体重数据如表1-1所示。所示。编号123456
11、78身高/cm165 165 157 170 175 165 155 170体重/kg4857505464614359求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm的女大学生的体重。的女大学生的体重。案例案例1:女大学生的身高与体重:女大学生的身高与体重解:解:1、选取身高为自变量、选取身高为自变量x,体重为因变量,体重为因变量y,作散点图:,作散点图:2、由散点图知道身高和体重有比较、由散点图知道身高和体重有比较好的线性相关关系,因此可以用线性好的线性相关关系,因此可以用线性回归方程刻画它们之间的关系
12、。回归方程刻画它们之间的关系。3、从散点图还看到,样本点散布在、从散点图还看到,样本点散布在某一条直线的附近,而不是在一条某一条直线的附近,而不是在一条直线上,所以不能用一次函数直线上,所以不能用一次函数y=bx+a描述它们关系。描述它们关系。探究:探究:身高为身高为172cm的女大学生的体重一定是的女大学生的体重一定是60.316kg吗?如果不是,你能解析一下原因吗?吗?如果不是,你能解析一下原因吗?我们可以用下面的我们可以用下面的线性回归模型线性回归模型来表示:来表示:y=bx+a+e,其中其中a和和b为模型的未知参数,为模型的未知参数,e称为随称为随机误差。机误差。思考思考:产生随机误差
13、项产生随机误差项e的原因是什么?的原因是什么?随机误差随机误差e e的来源的来源(可以推广到一般):可以推广到一般):1、忽略了其它因素的影响:影响身高、忽略了其它因素的影响:影响身高 y 的因素不只的因素不只是体重是体重 x,可能还包括遗传基因、饮食习惯、生,可能还包括遗传基因、饮食习惯、生长环境等因素;长环境等因素;2、用线性回归模型近似真实模型所引起的误差;、用线性回归模型近似真实模型所引起的误差;3、身高、身高 y 的观测误差。的观测误差。以上三项误差越小,说明我们的回归模型的拟合以上三项误差越小,说明我们的回归模型的拟合效果越好。效果越好。函数模型与回归模型之间的差别函数模型与回归模
14、型之间的差别函数模型:abxy回归模型:eabxy可以提供选择模型的准则函数模型与回归模型之间的差别函数模型与回归模型之间的差别函数模型:abxy回归模型:eabxy 线性回归模型线性回归模型y=bx+a+e增加了随机误差项增加了随机误差项e,因变量,因变量y的值由自变量的值由自变量x和和随机误差项随机误差项e共同确定,即共同确定,即自变量自变量x只能解析部分只能解析部分y的变化的变化。在统计中,我们也把自变量在统计中,我们也把自变量x称为解析变量,因变量称为解析变量,因变量y称为预报变量。称为预报变量。所以,对于身高为所以,对于身高为172cm的女大学生,由回归方程可以预报其体重为的女大学生
15、,由回归方程可以预报其体重为 0.849 7285.71260.316()ykg思考:思考:如何刻画预报变量(体重)的变化?这个变化在多大程度上如何刻画预报变量(体重)的变化?这个变化在多大程度上与解析变量(身高)有关?在多大程度上与随机误差有关?与解析变量(身高)有关?在多大程度上与随机误差有关?假设身高和随机误差的不同不会对体重产生任何影响,那么所有人的体重将相假设身高和随机误差的不同不会对体重产生任何影响,那么所有人的体重将相同。同。在体重不受任何变量影响的假设下,设在体重不受任何变量影响的假设下,设8名女大学生的体重都是她们的平均值,名女大学生的体重都是她们的平均值,即即8个人的体重都
16、为个人的体重都为54.5kg。54.554.554.554.554.554.554.554.5体重/kg170155165175170157165165身高/cm87654321编号54.5kg在散点图中,所有的点应该落在同一条在散点图中,所有的点应该落在同一条水平直线上,但是观测到的数据并非如水平直线上,但是观测到的数据并非如此。此。这就意味着这就意味着预报变量(体重)的值预报变量(体重)的值受解析变量(身高)或随机误差的影响受解析变量(身高)或随机误差的影响。对回归模型进行统计检验对回归模型进行统计检验5943616454505748体重/kg17015516517517015716516
17、5身高/cm87654321编号 例如,编号为例如,编号为6的女大学生的体重并没有落在水平直线上,她的体重为的女大学生的体重并没有落在水平直线上,她的体重为61kg。解析。解析变量(身高)和随机误差共同把这名学生的体重从变量(身高)和随机误差共同把这名学生的体重从54.5kg“推推”到了到了61kg,相差,相差6.5kg,所以所以6.5kg是解析变量和随机误差的是解析变量和随机误差的组合效应组合效应。编号为编号为3的女大学生的体重并也没有落在水平直线上,她的体重为的女大学生的体重并也没有落在水平直线上,她的体重为50kg。解析。解析变量(身高)和随机误差共同把这名学生的体重从变量(身高)和随机
18、误差共同把这名学生的体重从50kg“推推”到了到了54.5kg,相差,相差-4.5kg,这时解析变量和随机误差的组合效应为这时解析变量和随机误差的组合效应为-4.5kg。用这种方法可以对所有预报变量计算组合效应。用这种方法可以对所有预报变量计算组合效应。数学上,把每个效应(观测值减去总的平均值)的平方加起来,即用数学上,把每个效应(观测值减去总的平均值)的平方加起来,即用21()niiyy表示总的效应,称为表示总的效应,称为总偏差平方和总偏差平方和。在例在例1中,总偏差平方和为中,总偏差平方和为354。5943616454505748体重/kg170155165175170157165165身
展开阅读全文